| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from .... import UltraInferModel, ModelFormat
- from .... import c_lib_wrap as C
- class CenterpointPreprocessor:
- def __init__(self, config_file):
- """Create a preprocessor for Centerpoint"""
- self._preprocessor = C.vision.perception.CenterpointPreprocessor(config_file)
- def run(self, point_dirs, num_point_dim, with_timelag):
- """Preprocess input images for Centerpoint
- :param: input_ims: (list of numpy.ndarray)The input image
- :return: list of FDTensor
- """
- return self._preprocessor.run(point_dirs, num_point_dim, with_timelag)
- class Centerpoint(UltraInferModel):
- def __init__(
- self,
- model_file,
- params_file,
- config_file,
- runtime_option=None,
- model_format=ModelFormat.PADDLE,
- ):
- """Load a Centerpoint model exported by Centerpoint.
- :param model_file: (str)Path of model file, e.g ./Centerpoint.pdmodel
- :param params_file: (str)Path of parameters file, e.g ./Centerpoint.pdiparams
- :param config_file: (str)Path of config file, e.g ./infer_cfg.yaml
- :param runtime_option: (ultra_infer.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
- :param model_format: (ultra_infer.ModelForamt)Model format of the loaded model
- """
- super(Centerpoint, self).__init__(runtime_option)
- self._model = C.vision.perception.Centerpoint(
- model_file, params_file, config_file, self._runtime_option, model_format
- )
- assert self.initialized, "Centerpoint initialize failed."
- def predict(self, point_dir):
- """Detect an input image
- :param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
- :param conf_threshold: confidence threshold for postprocessing, default is 0.25
- :param nms_iou_threshold: iou threshold for NMS, default is 0.5
- :return: PerceptionResult
- """
- return self._model.predict(point_dir)
- def batch_predict(self, points_dir):
- """Classify a batch of input image
- :param im: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format
- :return list of PerceptionResult
- """
- return self._model.batch_predict(points_dir)
- @property
- def preprocessor(self):
- """Get CenterpointPreprocessor object of the loaded model
- :return CenterpointPreprocessor
- """
- return self._model.preprocessor
- @property
- def postprocessor(self):
- """Get CenterpointPostprocessor object of the loaded model
- :return CenterpointPostprocessor
- """
- return self._model.postprocessor
|