| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from .... import UltraInferModel, ModelFormat
- from .... import c_lib_wrap as C
- class PetrPreprocessor:
- def __init__(self, config_file):
- """Create a preprocessor for Petr"""
- self._preprocessor = C.vision.perception.PetrPreprocessor(config_file)
- def run(self, input_ims):
- """Preprocess input images for Petr
- :param: input_ims: (list of numpy.ndarray)The input image
- :return: list of FDTensor
- """
- return self._preprocessor.run(input_ims)
- class PetrPostprocessor:
- def __init__(self):
- """Create a postprocessor for Petr"""
- self._postprocessor = C.vision.perception.PetrPostprocessor()
- def run(self, runtime_results):
- """Postprocess the runtime results for Petr
- :param: runtime_results: (list of FDTensor)The output FDTensor results from runtime
- :return: list of PerceptionResult(If the runtime_results is predict by batched samples, the length of this list equals to the batch size)
- """
- return self._postprocessor.run(runtime_results)
- class Petr(UltraInferModel):
- def __init__(
- self,
- model_file,
- params_file,
- config_file,
- runtime_option=None,
- model_format=ModelFormat.PADDLE,
- ):
- """Load a SMoke model exported by Petr.
- :param model_file: (str)Path of model file, e.g ./petr.pdmodel
- :param params_file: (str)Path of parameters file, e.g ./petr.pdiparams
- :param config_file: (str)Path of config file, e.g ./infer_cfg.yaml
- :param runtime_option: (ultra_infer.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
- :param model_format: (ultra_infer.ModelForamt)Model format of the loaded model
- """
- super(Petr, self).__init__(runtime_option)
- self._model = C.vision.perception.Petr(
- model_file, params_file, config_file, self._runtime_option, model_format
- )
- assert self.initialized, "Petr initialize failed."
- def predict(self, input_image):
- """Detect an input image
- :param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
- :param conf_threshold: confidence threshold for postprocessing, default is 0.25
- :param nms_iou_threshold: iou threshold for NMS, default is 0.5
- :return: PerceptionResult
- """
- return self._model.predict(input_image)
- def batch_predict(self, images):
- """Classify a batch of input image
- :param im: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format
- :return list of PerceptionResult
- """
- return self._model.batch_predict(images)
- @property
- def preprocessor(self):
- """Get PetrPreprocessor object of the loaded model
- :return PetrPreprocessor
- """
- return self._model.preprocessor
- @property
- def postprocessor(self):
- """Get PetrPostprocessor object of the loaded model
- :return PetrPostprocessor
- """
- return self._model.postprocessor
|