mobilenetv2.py 1.8 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647
  1. import os
  2. # 选择使用0号卡
  3. os.environ['CUDA_VISIBLE_DEVICES'] = '0'
  4. from paddlex.cls import transforms
  5. import paddlex as pdx
  6. # 下载和解压蔬菜分类数据集
  7. veg_dataset = 'https://bj.bcebos.com/paddlex/datasets/vegetables_cls.tar.gz'
  8. pdx.utils.download_and_decompress(veg_dataset, path='./')
  9. # 定义训练和验证时的transforms
  10. # API说明: https://paddlex.readthedocs.io/zh_CN/latest/apis/transforms/cls_transforms.html#composedclstransforms
  11. train_transforms = transforms.ComposedClsTransforms(mode='train', crop_size=[224, 224])
  12. eval_transforms = transforms.ComposedClsTransforms(mode='eval', crop_size=[224, 224])
  13. # 定义训练和验证所用的数据集
  14. # API说明: https://paddlex.readthedocs.io/zh_CN/latest/apis/datasets/classification.html#imagenet
  15. train_dataset = pdx.datasets.ImageNet(
  16. data_dir='vegetables_cls',
  17. file_list='vegetables_cls/train_list.txt',
  18. label_list='vegetables_cls/labels.txt',
  19. transforms=train_transforms,
  20. shuffle=True)
  21. eval_dataset = pdx.datasets.ImageNet(
  22. data_dir='vegetables_cls',
  23. file_list='vegetables_cls/val_list.txt',
  24. label_list='vegetables_cls/labels.txt',
  25. transforms=eval_transforms)
  26. # 初始化模型,并进行训练
  27. # 可使用VisualDL查看训练指标
  28. # VisualDL启动方式: visualdl --logdir output/mobilenetv2/vdl_log --port 8001
  29. # 浏览器打开 https://0.0.0.0:8001即可
  30. # 其中0.0.0.0为本机访问,如为远程服务, 改成相应机器IP
  31. # API说明: https://paddlex.readthedocs.io/zh_CN/latest/apis/models/classification.html#resnet50
  32. model = pdx.cls.MobileNetV2(num_classes=len(train_dataset.labels))
  33. model.train(
  34. num_epochs=10,
  35. train_dataset=train_dataset,
  36. train_batch_size=32,
  37. eval_dataset=eval_dataset,
  38. lr_decay_epochs=[4, 6, 8],
  39. learning_rate=0.025,
  40. save_dir='output/mobilenetv2',
  41. use_vdl=True)