resnet50.py 2.1 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556
  1. import os
  2. # 选择使用0号卡
  3. os.environ['CUDA_VISIBLE_DEVICES'] = '0'
  4. import paddle.fluid as fluid
  5. from paddlex.cls import transforms
  6. import paddlex as pdx
  7. # 下载和解压蔬菜分类数据集
  8. veg_dataset = 'https://bj.bcebos.com/paddlex/datasets/vegetables_cls.tar.gz'
  9. pdx.utils.download_and_decompress(veg_dataset, path='./')
  10. # 定义训练和验证时的transforms
  11. # API说明: https://paddlex.readthedocs.io/zh_CN/latest/apis/transforms/cls_transforms.html#composedclstransforms
  12. train_transforms = transforms.ComposedClsTransforms(mode='train', crop_size=[224, 224])
  13. eval_transforms = transforms.ComposedClsTransforms(mode='eval', crop_size=[224, 224])
  14. # 定义训练和验证所用的数据集
  15. # API说明: https://paddlex.readthedocs.io/zh_CN/latest/apis/datasets/classification.html#imagenet
  16. train_dataset = pdx.datasets.ImageNet(
  17. data_dir='vegetables_cls',
  18. file_list='vegetables_cls/train_list.txt',
  19. label_list='vegetables_cls/labels.txt',
  20. transforms=train_transforms,
  21. shuffle=True)
  22. eval_dataset = pdx.datasets.ImageNet(
  23. data_dir='vegetables_cls',
  24. file_list='vegetables_cls/val_list.txt',
  25. label_list='vegetables_cls/labels.txt',
  26. transforms=eval_transforms)
  27. # PaddleX支持自定义构建优化器
  28. step_each_epoch = train_dataset.num_samples // 32
  29. learning_rate = fluid.layers.cosine_decay(
  30. learning_rate=0.025, step_each_epoch=step_each_epoch, epochs=10)
  31. optimizer = fluid.optimizer.Momentum(
  32. learning_rate=learning_rate,
  33. momentum=0.9,
  34. regularization=fluid.regularizer.L2Decay(4e-5))
  35. # 初始化模型,并进行训练
  36. # 可使用VisualDL查看训练指标
  37. # VisualDL启动方式: visualdl --logdir output/resnet50/vdl_log --port 8001
  38. # 浏览器打开 https://0.0.0.0:8001即可
  39. # 其中0.0.0.0为本机访问,如为远程服务, 改成相应机器IP
  40. # API说明: https://paddlex.readthedocs.io/zh_CN/latest/apis/models/classification.html#resnet50
  41. model = pdx.cls.ResNet50(num_classes=len(train_dataset.labels))
  42. model.train(
  43. num_epochs=10,
  44. train_dataset=train_dataset,
  45. train_batch_size=32,
  46. eval_dataset=eval_dataset,
  47. optimizer=optimizer,
  48. save_dir='output/resnet50',
  49. use_vdl=True)