| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import unicodedata
- from .tokenizer_utils import (
- PretrainedTokenizer,
- _is_control,
- _is_punctuation,
- _is_symbol,
- _is_whitespace,
- convert_to_unicode,
- whitespace_tokenize,
- )
- __all__ = [
- "BasicTokenizer",
- "BertTokenizer",
- "WordpieceTokenizer",
- ]
- class BasicTokenizer(object):
- """
- Runs basic tokenization (punctuation splitting, lower casing, etc.).
- Args:
- do_lower_case (bool):
- Whether to lowercase the input when tokenizing.
- Defaults to `True`.
- never_split (Iterable):
- Collection of tokens which will never be split during tokenization. Only has an effect when
- `do_basic_tokenize=True`
- tokenize_chinese_chars (bool):
- Whether to tokenize Chinese characters.
- strip_accents: (bool):
- Whether to strip all accents. If this option is not specified, then it will be determined by the
- value for `lowercase` (as in the original BERT).
- """
- def __init__(self, do_lower_case=True, never_split=None, tokenize_chinese_chars=True, strip_accents=None):
- """Constructs a BasicTokenizer."""
- if never_split is None:
- never_split = []
- self.do_lower_case = do_lower_case
- self.never_split = set(never_split)
- self.tokenize_chinese_chars = tokenize_chinese_chars
- self.strip_accents = strip_accents
- def tokenize(self, text, never_split=None):
- """
- Tokenizes a piece of text using basic tokenizer.
- Args:
- text (str): A piece of text.
- never_split (List[str]): List of token not to split.
- Returns:
- list(str): A list of tokens.
- Examples:
- .. code-block::
- from paddlenlp.transformers import BasicTokenizer
- basictokenizer = BasicTokenizer()
- tokens = basictokenizer.tokenize('He was a puppeteer')
- '''
- ['he', 'was', 'a', 'puppeteer']
- '''
- """
- text = convert_to_unicode(text)
- never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
- text = self._clean_text(text)
- if self.tokenize_chinese_chars:
- text = self._tokenize_chinese_chars(text)
- orig_tokens = whitespace_tokenize(text)
- split_tokens = []
- for token in orig_tokens:
- if token not in never_split:
- if self.do_lower_case:
- token = token.lower()
- if self.strip_accents is not False:
- token = self._run_strip_accents(token)
- elif self.strip_accents:
- token = self._run_strip_accents(token)
- split_tokens.extend(self._run_split_on_punc(token, never_split))
- output_tokens = whitespace_tokenize(" ".join(split_tokens))
- return output_tokens
- def _run_strip_accents(self, text):
- """
- Strips accents from a piece of text.
- """
- text = unicodedata.normalize("NFD", text)
- output = []
- for char in text:
- cat = unicodedata.category(char)
- if cat == "Mn":
- continue
- output.append(char)
- return "".join(output)
- def _run_split_on_punc(self, text, never_split=None):
- """
- Splits punctuation on a piece of text.
- """
- if never_split is not None and text in never_split:
- return [text]
- chars = list(text)
- i = 0
- start_new_word = True
- output = []
- while i < len(chars):
- char = chars[i]
- # punctuation and symbol should be treat as single char.
- if _is_punctuation(char) or _is_symbol(char):
- output.append([char])
- start_new_word = True
- else:
- if start_new_word:
- output.append([])
- start_new_word = False
- output[-1].append(char)
- i += 1
- return ["".join(x) for x in output]
- def _tokenize_chinese_chars(self, text):
- """
- Adds whitespace around any CJK character.
- """
- output = []
- for char in text:
- cp = ord(char)
- if self._is_chinese_char(cp):
- output.append(" ")
- output.append(char)
- output.append(" ")
- else:
- output.append(char)
- return "".join(output)
- def _is_chinese_char(self, cp):
- """
- Checks whether CP is the codepoint of a CJK character.
- """
- # This defines a "chinese character" as anything in the CJK Unicode block:
- # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
- #
- # Note that the CJK Unicode block is NOT all Japanese and Korean characters,
- # despite its name. The modern Korean Hangul alphabet is a different block,
- # as is Japanese Hiragana and Katakana. Those alphabets are used to write
- # space-separated words, so they are not treated specially and handled
- # like the all the other languages.
- if (
- (cp >= 0x4E00 and cp <= 0x9FFF)
- or (cp >= 0x3400 and cp <= 0x4DBF) #
- or (cp >= 0x20000 and cp <= 0x2A6DF) #
- or (cp >= 0x2A700 and cp <= 0x2B73F) #
- or (cp >= 0x2B740 and cp <= 0x2B81F) #
- or (cp >= 0x2B820 and cp <= 0x2CEAF) #
- or (cp >= 0xF900 and cp <= 0xFAFF)
- or (cp >= 0x2F800 and cp <= 0x2FA1F) #
- ): #
- return True
- return False
- def _clean_text(self, text):
- """
- Performs invalid character removal and whitespace cleanup on text.
- """
- output = []
- for char in text:
- cp = ord(char)
- if cp == 0 or cp == 0xFFFD or _is_control(char):
- continue
- if _is_whitespace(char):
- output.append(" ")
- else:
- output.append(char)
- return "".join(output)
- class WordpieceTokenizer(object):
- """
- Runs WordPiece tokenization.
- Args:
- vocab (Vocab|dict):
- Vocab of the word piece tokenizer.
- unk_token (str):
- A specific token to replace all unknown tokens.
- max_input_chars_per_word (int):
- If a word's length is more than
- max_input_chars_per_word, it will be dealt as unknown word.
- Defaults to 100.
- """
- def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
- self.vocab = vocab
- self.unk_token = unk_token
- self.max_input_chars_per_word = max_input_chars_per_word
- def tokenize(self, text):
- """
- Tokenizes a piece of text into its word pieces.
- This uses a greedy longest-match-first algorithm to perform tokenization
- using the given vocabulary.
- Args:
- text: A single token or whitespace separated tokens. This should have
- already been passed through `BasicTokenizer`.
- Returns:
- list (str): A list of wordpiece tokens.
- Examples:
- .. code-block::
- from paddlenlp.transformers import BertTokenizer, WordpieceTokenizer
- berttokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
- vocab = berttokenizer.vocab
- unk_token = berttokenizer.unk_token
- wordpiecetokenizer = WordpieceTokenizer(vocab,unk_token)
- inputs = wordpiecetokenizer.tokenize("unaffable")
- print(inputs)
- '''
- ["un", "##aff", "##able"]
- '''
- """
- output_tokens = []
- for token in whitespace_tokenize(text):
- chars = list(token)
- if len(chars) > self.max_input_chars_per_word:
- output_tokens.append(self.unk_token)
- continue
- is_bad = False
- start = 0
- sub_tokens = []
- while start < len(chars):
- end = len(chars)
- cur_substr = None
- while start < end:
- substr = "".join(chars[start:end])
- if start > 0:
- substr = "##" + substr
- if substr in self.vocab:
- cur_substr = substr
- break
- end -= 1
- if cur_substr is None:
- is_bad = True
- break
- sub_tokens.append(cur_substr)
- start = end
- if is_bad:
- output_tokens.append(self.unk_token)
- else:
- output_tokens.extend(sub_tokens)
- return output_tokens
- class BertTokenizer(PretrainedTokenizer):
- """
- Constructs a BERT tokenizer. It uses a basic tokenizer to do punctuation
- splitting, lower casing and so on, and follows a WordPiece tokenizer to
- tokenize as subwords.
- Args:
- vocab_file (str):
- The vocabulary file path (ends with '.txt') required to instantiate
- a `WordpieceTokenizer`.
- do_lower_case (bool, optional):
- Whether to lowercase the input when tokenizing.
- Defaults to `True`.
- do_basic_tokenize (bool, optional):
- Whether to use a basic tokenizer before a WordPiece tokenizer.
- Defaults to `True`.
- never_split (Iterable, optional):
- Collection of tokens which will never be split during tokenization. Only has an effect when
- `do_basic_tokenize=True`. Defaults to `None`.
- unk_token (str, optional):
- A special token representing the *unknown (out-of-vocabulary)* token.
- An unknown token is set to be `unk_token` inorder to be converted to an ID.
- Defaults to "[UNK]".
- sep_token (str, optional):
- A special token separating two different sentences in the same input.
- Defaults to "[SEP]".
- pad_token (str, optional):
- A special token used to make arrays of tokens the same size for batching purposes.
- Defaults to "[PAD]".
- cls_token (str, optional):
- A special token used for sequence classification. It is the last token
- of the sequence when built with special tokens. Defaults to "[CLS]".
- mask_token (str, optional):
- A special token representing a masked token. This is the token used
- in the masked language modeling task which the model tries to predict the original unmasked ones.
- Defaults to "[MASK]".
- tokenize_chinese_chars (bool, optional):
- Whether to tokenize Chinese characters.
- Defaults to `True`.
- strip_accents: (bool, optional):
- Whether to strip all accents. If this option is not specified, then it will be determined by the
- value for `lowercase` (as in the original BERT).
- Defaults to `None`.
- Examples:
- .. code-block::
- from paddlenlp.transformers import BertTokenizer
- tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
- inputs = tokenizer('He was a puppeteer')
- print(inputs)
- '''
- {'input_ids': [101, 2002, 2001, 1037, 13997, 11510, 102], 'token_type_ids': [0, 0, 0, 0, 0, 0, 0]}
- '''
- """
- resource_files_names = {"vocab_file": "vocab.txt"} # for save_pretrained
- pretrained_resource_files_map = {
- "vocab_file": {
- "bert-base-uncased": "https://bj.bcebos.com/paddle-hapi/models/bert/bert-base-uncased-vocab.txt",
- "bert-large-uncased": "https://bj.bcebos.com/paddle-hapi/models/bert/bert-large-uncased-vocab.txt",
- "bert-base-cased": "https://bj.bcebos.com/paddle-hapi/models/bert/bert-base-cased-vocab.txt",
- "bert-large-cased": "https://bj.bcebos.com/paddle-hapi/models/bert/bert-large-cased-vocab.txt",
- "bert-base-multilingual-uncased": "https://bj.bcebos.com/paddle-hapi/models/bert/bert-base-multilingual-uncased-vocab.txt",
- "bert-base-multilingual-cased": "https://bj.bcebos.com/paddle-hapi/models/bert/bert-base-multilingual-cased-vocab.txt",
- "bert-base-chinese": "https://bj.bcebos.com/paddle-hapi/models/bert/bert-base-chinese-vocab.txt",
- "bert-wwm-chinese": "http://bj.bcebos.com/paddlenlp/models/transformers/bert/bert-wwm-chinese-vocab.txt",
- "bert-wwm-ext-chinese": "http://bj.bcebos.com/paddlenlp/models/transformers/bert/bert-wwm-ext-chinese-vocab.txt",
- "macbert-large-chinese": "https://bj.bcebos.com/paddle-hapi/models/bert/bert-base-chinese-vocab.txt",
- "macbert-base-chinese": "https://bj.bcebos.com/paddle-hapi/models/bert/bert-base-chinese-vocab.txt",
- "simbert-base-chinese": "https://bj.bcebos.com/paddlenlp/models/transformers/simbert/vocab.txt",
- "uer/chinese-roberta-base": "https://bj.bcebos.com/paddlenlp/models/transformers/uer/chinese_roberta_vocab.txt",
- "uer/chinese-roberta-medium": "https://bj.bcebos.com/paddlenlp/models/transformers/uer/chinese_roberta_vocab.txt",
- "uer/chinese-roberta-6l-768h": "https://bj.bcebos.com/paddlenlp/models/transformers/uer/chinese_roberta_vocab.txt",
- "uer/chinese-roberta-small": "https://bj.bcebos.com/paddlenlp/models/transformers/uer/chinese_roberta_vocab.txt",
- "uer/chinese-roberta-mini": "https://bj.bcebos.com/paddlenlp/models/transformers/uer/chinese_roberta_vocab.txt",
- "uer/chinese-roberta-tiny": "https://bj.bcebos.com/paddlenlp/models/transformers/uer/chinese_roberta_vocab.txt",
- }
- }
- pretrained_init_configuration = {
- "bert-base-uncased": {"do_lower_case": True},
- "bert-large-uncased": {"do_lower_case": True},
- "bert-base-cased": {"do_lower_case": False},
- "bert-large-cased": {"do_lower_case": False},
- "bert-base-multilingual-uncased": {"do_lower_case": True},
- "bert-base-multilingual-cased": {"do_lower_case": False},
- "bert-base-chinese": {"do_lower_case": False},
- "bert-wwm-chinese": {"do_lower_case": False},
- "bert-wwm-ext-chinese": {"do_lower_case": False},
- "macbert-large-chinese": {"do_lower_case": False},
- "macbert-base-chinese": {"do_lower_case": False},
- "simbert-base-chinese": {"do_lower_case": True},
- "uer/chinese-roberta-base": {"do_lower_case": True},
- "uer/chinese-roberta-medium": {"do_lower_case": True},
- "uer/chinese-roberta-6l-768h": {"do_lower_case": True},
- "uer/chinese-roberta-small": {"do_lower_case": True},
- "uer/chinese-roberta-mini": {"do_lower_case": True},
- "uer/chinese-roberta-tiny": {"do_lower_case": True},
- }
- max_model_input_sizes = {
- "bert-base-uncased": 512,
- "bert-large-uncased": 512,
- "bert-base-cased": 512,
- "bert-large-cased": 512,
- "bert-base-multilingual-uncased": 512,
- "bert-base-multilingual-cased": 512,
- "bert-base-chinese": 512,
- "bert-wwm-chinese": 512,
- "bert-wwm-ext-chinese": 512,
- "macbert-large-chinese": 512,
- "macbert-base-chinese": 512,
- "simbert-base-chinese": 512,
- "uer/chinese-roberta-base": 512,
- "uer/chinese-roberta-medium": 512,
- "uer/chinese-roberta-6l-768h": 512,
- "uer/chinese-roberta-small": 512,
- "uer/chinese-roberta-mini": 512,
- "uer/chinese-roberta-tiny": 512,
- }
- padding_side = "right"
- def __init__(
- self,
- vocab_file,
- do_lower_case=True,
- do_basic_tokenize=True,
- never_split=None,
- unk_token="[UNK]",
- sep_token="[SEP]",
- pad_token="[PAD]",
- cls_token="[CLS]",
- mask_token="[MASK]",
- tokenize_chinese_chars=True,
- strip_accents=None,
- **kwargs
- ):
- if not os.path.isfile(vocab_file):
- raise ValueError(
- "Can't find a vocabulary file at path '{}'. To load the "
- "vocabulary from a pretrained model please use "
- "`tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`".format(vocab_file)
- )
- self.do_lower_case = do_lower_case
- self.vocab = self.load_vocabulary(vocab_file, unk_token=unk_token)
- self.do_basic_tokenize = do_basic_tokenize
- if do_basic_tokenize:
- self.basic_tokenizer = BasicTokenizer(
- do_lower_case=do_lower_case,
- never_split=never_split,
- tokenize_chinese_chars=tokenize_chinese_chars,
- strip_accents=strip_accents,
- )
- self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=unk_token)
- @property
- def vocab_size(self):
- """
- Return the size of vocabulary.
- Returns:
- int: The size of vocabulary.
- """
- return len(self.vocab)
- def get_vocab(self):
- return dict(self.vocab.token_to_idx, **self.added_tokens_encoder)
- def _tokenize(self, text):
- """
- End-to-end tokenization for BERT models.
- Args:
- text (str): The text to be tokenized.
- Returns:
- list: A list of string representing converted tokens.
- """
- split_tokens = []
- if self.do_basic_tokenize:
- for token in self.basic_tokenizer.tokenize(text, never_split=self.all_special_tokens):
- # If the token is part of the never_split set
- if token in self.basic_tokenizer.never_split:
- split_tokens.append(token)
- else:
- split_tokens += self.wordpiece_tokenizer.tokenize(token)
- else:
- split_tokens = self.wordpiece_tokenizer.tokenize(text)
- return split_tokens
- def convert_tokens_to_string(self, tokens):
- """
- Converts a sequence of tokens (list of string) to a single string. Since
- the usage of WordPiece introducing `##` to concat subwords, also removes
- `##` when converting.
- Args:
- tokens (list): A list of string representing tokens to be converted.
- Returns:
- str: Converted string from tokens.
- Examples:
- .. code-block::
- from paddlenlp.transformers import BertTokenizer
- berttokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
- tokens = berttokenizer.tokenize('He was a puppeteer')
- '''
- ['he', 'was', 'a', 'puppet', '##eer']
- '''
- strings = tokenizer.convert_tokens_to_string(tokens)
- '''
- he was a puppeteer
- '''
- """
- out_string = " ".join(tokens).replace(" ##", "").strip()
- return out_string
- def num_special_tokens_to_add(self, pair=False):
- """
- Returns the number of added tokens when encoding a sequence with special tokens.
- Args:
- pair(bool):
- Whether the input is a sequence pair or a single sequence.
- Defaults to `False` and the input is a single sequence.
- Returns:
- int: Number of tokens added to sequences.
- """
- token_ids_0 = []
- token_ids_1 = []
- return len(self.build_inputs_with_special_tokens(token_ids_0, token_ids_1 if pair else None))
- def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
- """
- Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
- adding special tokens.
- A BERT sequence has the following format:
- - single sequence: ``[CLS] X [SEP]``
- - pair of sequences: ``[CLS] A [SEP] B [SEP]``
- Args:
- token_ids_0 (List[int]):
- List of IDs to which the special tokens will be added.
- token_ids_1 (List[int], optional):
- Optional second list of IDs for sequence pairs. Defaults to None.
- Returns:
- List[int]: List of input_id with the appropriate special tokens.
- """
- if token_ids_1 is None:
- return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
- _cls = [self.cls_token_id]
- _sep = [self.sep_token_id]
- return _cls + token_ids_0 + _sep + token_ids_1 + _sep
- def build_offset_mapping_with_special_tokens(self, offset_mapping_0, offset_mapping_1=None):
- """
- Build offset map from a pair of offset map by concatenating and adding offsets of special tokens.
- A BERT offset_mapping has the following format:
- - single sequence: ``(0,0) X (0,0)``
- - pair of sequences: ``(0,0) A (0,0) B (0,0)``
- Args:
- offset_mapping_ids_0 (List[tuple]):
- List of wordpiece offsets to which the special tokens will be added.
- offset_mapping_ids_1 (List[tuple], optional):
- Optional second list of wordpiece offsets for offset mapping pairs. Defaults to None.
- Returns:
- List[tuple]: A list of wordpiece offsets with the appropriate offsets of special tokens.
- """
- if offset_mapping_1 is None:
- return [(0, 0)] + offset_mapping_0 + [(0, 0)]
- return [(0, 0)] + offset_mapping_0 + [(0, 0)] + offset_mapping_1 + [(0, 0)]
- def create_token_type_ids_from_sequences(self, token_ids_0, token_ids_1=None):
- """
- Create a mask from the two sequences passed to be used in a sequence-pair classification task.
- A BERT sequence pair mask has the following format:
- ::
- 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
- | first sequence | second sequence |
- If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
- Args:
- token_ids_0 (List[int]):
- A list of `inputs_ids` for the first sequence.
- token_ids_1 (List[int], optional):
- Optional second list of IDs for sequence pairs. Defaults to None.
- Returns:
- List[int]: List of token_type_id according to the given sequence(s).
- """
- _sep = [self.sep_token_id]
- _cls = [self.cls_token_id]
- if token_ids_1 is None:
- return len(_cls + token_ids_0 + _sep) * [0]
- return len(_cls + token_ids_0 + _sep) * [0] + len(token_ids_1 + _sep) * [1]
- def get_special_tokens_mask(self, token_ids_0, token_ids_1=None, already_has_special_tokens=False):
- """
- Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
- special tokens using the tokenizer ``encode`` methods.
- Args:
- token_ids_0 (List[int]):
- A list of `inputs_ids` for the first sequence.
- token_ids_1 (List[int], optional):
- Optional second list of IDs for sequence pairs. Defaults to None.
- already_has_special_tokens (bool, optional): Whether or not the token list is already
- formatted with special tokens for the model. Defaults to None.
- Returns:
- List[int]: The list of integers either be 0 or 1: 1 for a special token, 0 for a sequence token.
- """
- if already_has_special_tokens:
- if token_ids_1 is not None:
- raise ValueError(
- "You should not supply a second sequence if the provided sequence of "
- "ids is already formatted with special tokens for the model."
- )
- return list(map(lambda x: 1 if x in self.all_special_ids else 0, token_ids_0))
- if token_ids_1 is not None:
- return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
- return [1] + ([0] * len(token_ids_0)) + [1]
- def _convert_id_to_token(self, index):
- """Converts an index (integer) in a token (str) using the vocab."""
- return self.vocab._idx_to_token.get(index, self.unk_token)
|