| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import pickle
- from pathlib import Path
- import numpy as np
- from ..utils.io import ImageReader
- from ..components import CropByBoxes, FaissIndexer
- from ..components.retrieval.faiss import FaissBuilder
- from ..results import ShiTuResult
- from .base import BasePipeline
- class ShiTuV2Pipeline(BasePipeline):
- """ShiTuV2 Pipeline"""
- entities = "PP-ShiTuV2"
- def __init__(
- self,
- det_model,
- rec_model,
- det_batch_size=1,
- rec_batch_size=1,
- index=None,
- score_thres=None,
- hamming_radius=None,
- return_k=5,
- device=None,
- predictor_kwargs=None,
- _build_models=True,
- ):
- super().__init__(device, predictor_kwargs)
- if _build_models:
- self._build_predictor(det_model, rec_model)
- self.set_predictor(det_batch_size, rec_batch_size, device)
- self._return_k, self._score_thres, self._hamming_radius = (
- return_k,
- score_thres,
- hamming_radius,
- )
- self._indexer = self._build_indexer(index=index) if index else None
- def _build_indexer(self, index):
- return FaissIndexer(
- index=index,
- return_k=self._return_k,
- score_thres=self._score_thres,
- hamming_radius=self._hamming_radius,
- )
- def _build_predictor(self, det_model, rec_model):
- self.det_model = self._create(model=det_model)
- self.rec_model = self._create(model=rec_model)
- self._crop_by_boxes = CropByBoxes()
- self._img_reader = ImageReader(backend="opencv")
- def set_predictor(self, det_batch_size=None, rec_batch_size=None, device=None):
- if det_batch_size:
- self.det_model.set_predictor(batch_size=det_batch_size)
- if rec_batch_size:
- self.rec_model.set_predictor(batch_size=rec_batch_size)
- if device:
- self.det_model.set_predictor(device=device)
- self.rec_model.set_predictor(device=device)
- def predict(self, input, index=None, **kwargs):
- indexer = self._build_indexer(index) if index is not None else self._indexer
- assert indexer
- self.set_predictor(**kwargs)
- for det_res in self.det_model(input):
- rec_res = self.get_rec_result(det_res, indexer)
- yield self.get_final_result(det_res, rec_res)
- def get_rec_result(self, det_res, indexer):
- if len(det_res["boxes"]) == 0:
- full_img = self._img_reader.read(det_res["input_path"])
- w, h = full_img.shape[:2]
- det_res["boxes"].append(
- {
- "cls_id": 0,
- "label": "full_img",
- "score": 0,
- "coordinate": [0, 0, h, w],
- }
- )
- subs_of_img = list(self._crop_by_boxes(det_res))
- img_list = [img["img"] for img in subs_of_img]
- all_rec_res = list(self.rec_model(img_list))
- all_rec_res = next(indexer(all_rec_res))
- output = {"label": [], "score": []}
- for res in all_rec_res:
- output["label"].append(res["label"])
- output["score"].append(res["score"])
- return output
- def get_final_result(self, det_res, rec_res):
- single_img_res = {"input_path": det_res["input_path"], "boxes": []}
- for i, obj in enumerate(det_res["boxes"]):
- rec_scores = rec_res["score"][i]
- labels = rec_res["label"][i]
- single_img_res["boxes"].append(
- {
- "labels": labels,
- "rec_scores": rec_scores,
- "det_score": obj["score"],
- "coordinate": obj["coordinate"],
- }
- )
- return ShiTuResult(single_img_res)
- def build_index(
- self,
- gallery_imgs,
- gallery_label,
- metric_type="IP",
- index_type="HNSW32",
- **kwargs
- ):
- return FaissBuilder.build(
- gallery_imgs,
- gallery_label,
- self.rec_model.predict,
- metric_type=metric_type,
- index_type=index_type,
- )
- def remove_index(self, remove_ids, index):
- return FaissBuilder.remove(remove_ids, index)
- def append_index(
- self,
- gallery_imgs,
- gallery_label,
- index,
- ):
- return FaissBuilder.append(
- gallery_imgs,
- gallery_label,
- self.rec_model.predict,
- index,
- )
|