| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from typing import List, Optional, Type
- from fastapi import FastAPI, HTTPException
- from pydantic import BaseModel, Field
- from typing_extensions import Annotated, TypeAlias
- from ._common import ocr as ocr_common
- from .....utils import logging
- from ...formula_recognition import FormulaRecognitionPipeline
- from .. import utils as serving_utils
- from ..app import AppConfig, create_app
- from ..models import NoResultResponse, ResultResponse, DataInfo
- InferRequest: Type[ocr_common.InferRequest] = ocr_common.InferRequest
- Point: TypeAlias = Annotated[List[float], Field(min_length=2, max_length=2)]
- Polygon: TypeAlias = Annotated[List[Point], Field(min_length=3)]
- class Formula(BaseModel):
- poly: Polygon
- latex: str
- class FormulaRecResult(BaseModel):
- formulas: List[Formula]
- inputImage: str
- layoutImage: str
- ocrImage: Optional[str] = None
- class InferResult(BaseModel):
- formulaRecResults: List[FormulaRecResult]
- dataInfo: DataInfo
- def create_pipeline_app(
- pipeline: FormulaRecognitionPipeline, app_config: AppConfig
- ) -> FastAPI:
- app, ctx = create_app(
- pipeline=pipeline, app_config=app_config, app_aiohttp_session=True
- )
- ocr_common.update_app_context(ctx)
- ctx.extra["return_ocr_imgs"] = False
- if ctx.config.extra:
- if "return_ocr_imgs" in ctx.config.extra:
- ctx.extra["return_ocr_imgs"] = ctx.config.extra["return_ocr_imgs"]
- @app.post(
- "/formula-recognition",
- operation_id="infer",
- responses={422: {"model": NoResultResponse}},
- response_model_exclude_none=True,
- )
- async def _infer(request: InferRequest) -> ResultResponse[InferResult]:
- pipeline = ctx.pipeline
- log_id = serving_utils.generate_log_id()
- if request.inferenceParams:
- max_long_side = request.inferenceParams.maxLongSide
- if max_long_side:
- raise HTTPException(
- status_code=422,
- detail="`max_long_side` is currently not supported.",
- )
- images, data_info = await ocr_common.get_images(request, ctx)
- try:
- result = await pipeline.infer(images)
- formula_rec_results: List[FormulaRecResult] = []
- for i, (img, item) in enumerate(zip(images, result)):
- formulas: List[Formula] = []
- for poly, latex in zip(item["dt_polys"], item["rec_formula"]):
- formulas.append(
- Formula(
- poly=poly,
- latex=latex,
- )
- )
- layout_img = item["layout_result"].img
- if ctx.extra["return_ocr_imgs"]:
- ocr_img = item["formula_result"].img
- if ocr_img is None:
- raise RuntimeError("Failed to get the OCR image")
- else:
- ocr_img = None
- output_imgs = await ocr_common.postprocess_images(
- log_id=log_id,
- index=i,
- app_context=ctx,
- input_image=img,
- layout_image=layout_img,
- ocr_image=ocr_img,
- )
- if ocr_img is not None:
- input_img, layout_img, ocr_img = output_imgs
- else:
- input_img, layout_img = output_imgs
- formula_rec_results.append(
- FormulaRecResult(
- formulas=formulas,
- inputImage=input_img,
- layoutImage=layout_img,
- ocrImage=ocr_img,
- )
- )
- return ResultResponse[InferResult](
- logId=log_id,
- result=InferResult(
- formulaRecResults=formula_rec_results,
- dataInfo=data_info,
- ),
- )
- except Exception:
- logging.exception("Unexpected exception")
- raise HTTPException(status_code=500, detail="Internal server error")
- return app
|