image_classification.py 2.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from typing import Any, Dict, List
  15. from fastapi import FastAPI
  16. from ...infra import utils as serving_utils
  17. from ...infra.config import AppConfig
  18. from ...infra.models import ResultResponse
  19. from ...schemas.image_classification import INFER_ENDPOINT, InferRequest, InferResult
  20. from .._app import create_app, primary_operation
  21. def create_pipeline_app(pipeline: Any, app_config: AppConfig) -> FastAPI:
  22. app, ctx = create_app(
  23. pipeline=pipeline, app_config=app_config, app_aiohttp_session=True
  24. )
  25. @primary_operation(
  26. app,
  27. INFER_ENDPOINT,
  28. "infer",
  29. )
  30. async def _infer(request: InferRequest) -> ResultResponse[InferResult]:
  31. pipeline = ctx.pipeline
  32. aiohttp_session = ctx.aiohttp_session
  33. file_bytes = await serving_utils.get_raw_bytes_async(
  34. request.image, aiohttp_session
  35. )
  36. image = serving_utils.image_bytes_to_array(file_bytes)
  37. result = (await pipeline.infer(image, topk=request.topk))[0]
  38. if "label_names" in result:
  39. cat_names = result["label_names"]
  40. else:
  41. cat_names = [str(id_) for id_ in result["class_ids"]]
  42. categories: List[Dict[str, Any]] = []
  43. for id_, name, score in zip(result["class_ids"], cat_names, result["scores"]):
  44. categories.append(dict(id=id_, name=name, score=score))
  45. if ctx.config.visualize:
  46. output_image_base64 = serving_utils.base64_encode(
  47. serving_utils.image_to_bytes(result.img["res"])
  48. )
  49. else:
  50. output_image_base64 = None
  51. return ResultResponse[InferResult](
  52. logId=serving_utils.generate_log_id(),
  53. result=InferResult(categories=categories, image=output_image_base64),
  54. )
  55. return app