| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from typing import Any, Dict, List
- import numpy as np
- import pycocotools.mask as mask_util
- from fastapi import FastAPI
- from ...infra import utils as serving_utils
- from ...infra.config import AppConfig
- from ...infra.models import ResultResponse
- from ...schemas.instance_segmentation import INFER_ENDPOINT, InferRequest, InferResult
- from .._app import create_app, primary_operation
- def _rle(mask: np.ndarray) -> str:
- rle_res = mask_util.encode(np.asarray(mask[..., None], order="F", dtype="uint8"))[0]
- return rle_res["counts"].decode("utf-8")
- def create_pipeline_app(pipeline: Any, app_config: AppConfig) -> FastAPI:
- app, ctx = create_app(
- pipeline=pipeline,
- app_config=app_config,
- app_aiohttp_session=True,
- )
- @primary_operation(
- app,
- INFER_ENDPOINT,
- "infer",
- )
- async def _infer(request: InferRequest) -> ResultResponse[InferResult]:
- pipeline = ctx.pipeline
- aiohttp_session = ctx.aiohttp_session
- file_bytes = await serving_utils.get_raw_bytes_async(
- request.image, aiohttp_session
- )
- image = serving_utils.image_bytes_to_array(file_bytes)
- result = (await pipeline.infer(image, threshold=request.threshold))[0]
- instances: List[Dict[str, Any]] = []
- for obj, mask in zip(result["boxes"], result["masks"]):
- rle_res = _rle(mask)
- mask = dict(rleResult=rle_res, size=mask.shape)
- instances.append(
- dict(
- bbox=obj["coordinate"],
- categoryId=obj["cls_id"],
- categoryName=obj["label"],
- score=obj["score"],
- mask=mask,
- )
- )
- if ctx.config.visualize:
- output_image_base64 = serving_utils.base64_encode(
- serving_utils.image_to_bytes(result.img["res"])
- )
- else:
- output_image_base64 = None
- return ResultResponse[InferResult](
- logId=serving_utils.generate_log_id(),
- result=InferResult(instances=instances, image=output_image_base64),
- )
- return app
|