| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177 |
- // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include "ultra_infer/vision/visualize/segmentation_arm.h"
- #ifdef __ARM_NEON
- #include <arm_neon.h>
- #endif
- namespace ultra_infer {
- namespace vision {
- static constexpr int _OMP_THREADS = 2;
- static inline void QuantizeBlendingWeight8(float weight,
- uint8_t *old_multi_factor,
- uint8_t *new_multi_factor) {
- // Quantize the weight to boost blending performance.
- // if 0.0 < w <= 1/8, w ~ 1/8=1/(2^3) shift right 3 mul 1, 7
- // if 1/8 < w <= 2/8, w ~ 2/8=1/(2^3) shift right 3 mul 2, 6
- // if 2/8 < w <= 3/8, w ~ 3/8=1/(2^3) shift right 3 mul 3, 5
- // if 3/8 < w <= 4/8, w ~ 4/8=1/(2^3) shift right 3 mul 4, 4
- // Shift factor is always 3, but the mul factor is different.
- // Moving 7 bits to the right tends to result in a zero value,
- // So, We choose to shift 3 bits to get an approximation.
- uint8_t weight_quantize = static_cast<uint8_t>(weight * 8.0f);
- *new_multi_factor = weight_quantize;
- *old_multi_factor = (8 - weight_quantize);
- }
- cv::Mat VisSegmentationNEON(const cv::Mat &im, const SegmentationResult &result,
- float weight, bool quantize_weight) {
- #ifndef __ARM_NEON
- FDASSERT(false, "UltraInfer was not compiled with Arm NEON support!")
- #else
- int64_t height = result.shape[0];
- int64_t width = result.shape[1];
- auto vis_img = cv::Mat(height, width, CV_8UC3);
- int32_t size = static_cast<int32_t>(height * width);
- uint8_t *vis_ptr = static_cast<uint8_t *>(vis_img.data);
- const uint8_t *label_ptr =
- static_cast<const uint8_t *>(result.label_map.data());
- const uint8_t *im_ptr = static_cast<const uint8_t *>(im.data);
- if (!quantize_weight) {
- uint8x16_t zerox16 = vdupq_n_u8(0);
- #pragma omp parallel for proc_bind(close) num_threads(_OMP_THREADS)
- for (int i = 0; i < size - 15; i += 16) {
- uint8x16x3_t bgrx16x3 = vld3q_u8(im_ptr + i * 3); // 48 bytes
- uint8x16_t labelx16 = vld1q_u8(label_ptr + i); // 16 bytes
- uint8x16_t ibx16 = bgrx16x3.val[0];
- uint8x16_t igx16 = bgrx16x3.val[1];
- uint8x16_t irx16 = bgrx16x3.val[2];
- // e.g 0b00000001 << 7 -> 0b10000000 128;
- uint8x16_t mbx16 = vshlq_n_u8(labelx16, 7);
- uint8x16_t mgx16 = vshlq_n_u8(labelx16, 4);
- uint8x16_t mrx16 = vshlq_n_u8(labelx16, 3);
- uint8x16x3_t vbgrx16x3;
- // Keep the pixels of input im if mask = 0
- uint8x16_t cezx16 = vceqq_u8(labelx16, zerox16);
- vbgrx16x3.val[0] = vorrq_u8(vandq_u8(cezx16, ibx16), mbx16);
- vbgrx16x3.val[1] = vorrq_u8(vandq_u8(cezx16, igx16), mgx16);
- vbgrx16x3.val[2] = vorrq_u8(vandq_u8(cezx16, irx16), mrx16);
- vst3q_u8(vis_ptr + i * 3, vbgrx16x3);
- }
- for (int i = size - 15; i < size; i++) {
- uint8_t label = label_ptr[i];
- vis_ptr[i * 3 + 0] = (label << 7);
- vis_ptr[i * 3 + 1] = (label << 4);
- vis_ptr[i * 3 + 2] = (label << 3);
- }
- // Blend the colors use OpenCV
- cv::addWeighted(im, 1.0 - weight, vis_img, weight, 0, vis_img);
- return vis_img;
- }
- // Quantize the weight to boost blending performance.
- // After that, we can directly use shift instructions
- // to blend the colors from input im and mask. Please
- // check QuantizeBlendingWeight8 for more details.
- uint8_t old_multi_factor, new_multi_factor;
- QuantizeBlendingWeight8(weight, &old_multi_factor, &new_multi_factor);
- if (new_multi_factor == 0) {
- return im; // Only keep origin image.
- }
- if (new_multi_factor == 8) {
- // Only keep mask, no need to blending with origin image.
- #pragma omp parallel for proc_bind(close) num_threads(_OMP_THREADS)
- for (int i = 0; i < size - 15; i += 16) {
- uint8x16_t labelx16 = vld1q_u8(label_ptr + i); // 16 bytes
- // e.g 0b00000001 << 7 -> 0b10000000 128;
- uint8x16_t mbx16 = vshlq_n_u8(labelx16, 7);
- uint8x16_t mgx16 = vshlq_n_u8(labelx16, 4);
- uint8x16_t mrx16 = vshlq_n_u8(labelx16, 3);
- uint8x16x3_t vbgr16x3;
- vbgr16x3.val[0] = mbx16;
- vbgr16x3.val[1] = mgx16;
- vbgr16x3.val[2] = mrx16;
- vst3q_u8(vis_ptr + i * 3, vbgr16x3);
- }
- for (int i = size - 15; i < size; i++) {
- uint8_t label = label_ptr[i];
- vis_ptr[i * 3 + 0] = (label << 7);
- vis_ptr[i * 3 + 1] = (label << 4);
- vis_ptr[i * 3 + 2] = (label << 3);
- }
- return vis_img;
- }
- uint8x16_t zerox16 = vdupq_n_u8(0);
- uint8x16_t old_fx16 = vdupq_n_u8(old_multi_factor);
- uint8x16_t new_fx16 = vdupq_n_u8(new_multi_factor);
- // Blend the two colors together with quantize 'weight'.
- #pragma omp parallel for proc_bind(close) num_threads(_OMP_THREADS)
- for (int i = 0; i < size - 15; i += 16) {
- uint8x16x3_t bgrx16x3 = vld3q_u8(im_ptr + i * 3); // 48 bytes
- uint8x16_t labelx16 = vld1q_u8(label_ptr + i); // 16 bytes
- uint8x16_t ibx16 = bgrx16x3.val[0];
- uint8x16_t igx16 = bgrx16x3.val[1];
- uint8x16_t irx16 = bgrx16x3.val[2];
- // e.g 0b00000001 << 7 -> 0b10000000 128;
- uint8x16_t mbx16 = vshlq_n_u8(labelx16, 7);
- uint8x16_t mgx16 = vshlq_n_u8(labelx16, 4);
- uint8x16_t mrx16 = vshlq_n_u8(labelx16, 3);
- // Moving 7 bits to the right tends to result in zero,
- // So, We choose to shift 3 bits to get an approximation
- uint8x16_t ibx16_mshr = vmulq_u8(vshrq_n_u8(ibx16, 3), old_fx16);
- uint8x16_t igx16_mshr = vmulq_u8(vshrq_n_u8(igx16, 3), old_fx16);
- uint8x16_t irx16_mshr = vmulq_u8(vshrq_n_u8(irx16, 3), old_fx16);
- uint8x16_t mbx16_mshr = vmulq_u8(vshrq_n_u8(mbx16, 3), new_fx16);
- uint8x16_t mgx16_mshr = vmulq_u8(vshrq_n_u8(mgx16, 3), new_fx16);
- uint8x16_t mrx16_mshr = vmulq_u8(vshrq_n_u8(mrx16, 3), new_fx16);
- uint8x16_t qbx16 = vqaddq_u8(ibx16_mshr, mbx16_mshr);
- uint8x16_t qgx16 = vqaddq_u8(igx16_mshr, mgx16_mshr);
- uint8x16_t qrx16 = vqaddq_u8(irx16_mshr, mrx16_mshr);
- // Keep the pixels of input im if label = 0 (means mask = 0)
- uint8x16_t cezx16 = vceqq_u8(labelx16, zerox16);
- uint8x16_t abx16 = vandq_u8(cezx16, ibx16);
- uint8x16_t agx16 = vandq_u8(cezx16, igx16);
- uint8x16_t arx16 = vandq_u8(cezx16, irx16);
- uint8x16x3_t vbgr16x3;
- // Reset qx values to 0 if label is 0, then, keep mask values
- // if label is not 0
- uint8x16_t ncezx16 = vmvnq_u8(cezx16);
- vbgr16x3.val[0] = vorrq_u8(abx16, vandq_u8(ncezx16, qbx16));
- vbgr16x3.val[1] = vorrq_u8(agx16, vandq_u8(ncezx16, qgx16));
- vbgr16x3.val[2] = vorrq_u8(arx16, vandq_u8(ncezx16, qrx16));
- // Store the blended pixels to vis img
- vst3q_u8(vis_ptr + i * 3, vbgr16x3);
- }
- for (int i = size - 15; i < size; i++) {
- uint8_t label = label_ptr[i];
- vis_ptr[i * 3 + 0] = (im_ptr[i * 3 + 0] >> 3) * old_multi_factor +
- ((label << 7) >> 3) * new_multi_factor;
- vis_ptr[i * 3 + 1] = (im_ptr[i * 3 + 1] >> 3) * old_multi_factor +
- ((label << 4) >> 3) * new_multi_factor;
- vis_ptr[i * 3 + 2] = (im_ptr[i * 3 + 2] >> 3) * old_multi_factor +
- ((label << 3) >> 3) * new_multi_factor;
- }
- return vis_img;
- #endif
- }
- } // namespace vision
- } // namespace ultra_infer
|