resnet50.py 1.9 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758
  1. import os
  2. # 选择使用0号卡
  3. os.environ['CUDA_VISIBLE_DEVICES'] = '0'
  4. import paddle.fluid as fluid
  5. from paddlex.cls import transforms
  6. import paddlex as pdx
  7. # 下载和解压蔬菜分类数据集
  8. veg_dataset = 'https://bj.bcebos.com/paddlex/datasets/vegetables_cls.tar.gz'
  9. pdx.utils.download_and_decompress(veg_dataset, path='./')
  10. # 定义训练和验证时的transforms
  11. train_transforms = transforms.Compose(
  12. [transforms.RandomCrop(crop_size=224),
  13. transforms.Normalize()])
  14. eval_transforms = transforms.Compose([
  15. transforms.ResizeByShort(short_size=256),
  16. transforms.CenterCrop(crop_size=224),
  17. transforms.Normalize()
  18. ])
  19. # 定义训练和验证所用的数据集
  20. train_dataset = pdx.datasets.ImageNet(
  21. data_dir='vegetables_cls',
  22. file_list='vegetables_cls/train_list.txt',
  23. label_list='vegetables_cls/labels.txt',
  24. transforms=train_transforms,
  25. shuffle=True)
  26. eval_dataset = pdx.datasets.ImageNet(
  27. data_dir='vegetables_cls',
  28. file_list='vegetables_cls/val_list.txt',
  29. label_list='vegetables_cls/labels.txt',
  30. transforms=eval_transforms)
  31. # PaddleX支持自定义构建优化器
  32. step_each_epoch = train_dataset.num_samples // 32
  33. learning_rate = fluid.layers.cosine_decay(
  34. learning_rate=0.025, step_each_epoch=step_each_epoch, epochs=10)
  35. optimizer = fluid.optimizer.Momentum(
  36. learning_rate=learning_rate,
  37. momentum=0.9,
  38. regularization=fluid.regularizer.L2Decay(4e-5))
  39. # 初始化模型,并进行训练
  40. # 可使用VisualDL查看训练指标
  41. # VisualDL启动方式: visualdl --logdir output/resnet50/vdl_log --port 8001
  42. # 浏览器打开 https://0.0.0.0:8001即可
  43. # 其中0.0.0.0为本机访问,如为远程服务, 改成相应机器IP
  44. model = pdx.cls.ResNet50(num_classes=len(train_dataset.labels))
  45. model.train(
  46. num_epochs=10,
  47. train_dataset=train_dataset,
  48. train_batch_size=32,
  49. eval_dataset=eval_dataset,
  50. optimizer=optimizer,
  51. save_dir='output/resnet50',
  52. use_vdl=True)