faster_rcnn_r50_fpn.py 1.8 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455
  1. import os
  2. # 选择使用0号卡
  3. os.environ['CUDA_VISIBLE_DEVICES'] = '0'
  4. from paddlex.det import transforms
  5. import paddlex as pdx
  6. # 下载和解压昆虫检测数据集
  7. insect_dataset = 'https://bj.bcebos.com/paddlex/datasets/insect_det.tar.gz'
  8. pdx.utils.download_and_decompress(insect_dataset, path='./')
  9. # 定义训练和验证时的transforms
  10. train_transforms = transforms.Compose([
  11. transforms.RandomHorizontalFlip(),
  12. transforms.Normalize(),
  13. transforms.ResizeByShort(short_size=800, max_size=1333),
  14. transforms.Padding(coarsest_stride=32)
  15. ])
  16. eval_transforms = transforms.Compose([
  17. transforms.Normalize(),
  18. transforms.ResizeByShort(short_size=800, max_size=1333),
  19. transforms.Padding(coarsest_stride=32),
  20. ])
  21. # 定义训练和验证所用的数据集
  22. train_dataset = pdx.datasets.VOCDetection(
  23. data_dir='insect_det',
  24. file_list='insect_det/train_list.txt',
  25. label_list='insect_det/labels.txt',
  26. transforms=train_transforms,
  27. shuffle=True)
  28. eval_dataset = pdx.datasets.VOCDetection(
  29. data_dir='insect_det',
  30. file_list='insect_det/val_list.txt',
  31. label_list='insect_det/labels.txt',
  32. transforms=eval_transforms)
  33. # 初始化模型,并进行训练
  34. # 可使用VisualDL查看训练指标
  35. # VisualDL启动方式: visualdl --logdir output/faster_rcnn_r50_fpn/vdl_log --port 8001
  36. # 浏览器打开 https://0.0.0.0:8001即可
  37. # 其中0.0.0.0为本机访问,如为远程服务, 改成相应机器IP
  38. # num_classes 需要设置为包含背景类的类别数,即: 目标类别数量 + 1
  39. num_classes = len(train_dataset.labels) + 1
  40. model = pdx.det.FasterRCNN(num_classes=num_classes)
  41. model.train(
  42. num_epochs=12,
  43. train_dataset=train_dataset,
  44. train_batch_size=2,
  45. eval_dataset=eval_dataset,
  46. learning_rate=0.0025,
  47. lr_decay_epochs=[8, 11],
  48. save_dir='output/faster_rcnn_r50_fpn',
  49. use_vdl=True)