detector.cpp 7.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171
  1. // Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. #include <glog/logging.h>
  15. #include <omp.h>
  16. #include <algorithm>
  17. #include <chrono> // NOLINT
  18. #include <fstream>
  19. #include <iostream>
  20. #include <string>
  21. #include <vector>
  22. #include <utility>
  23. #include "include/paddlex/paddlex.h"
  24. #include "include/paddlex/visualize.h"
  25. using namespace std::chrono; // NOLINT
  26. DEFINE_string(model_dir, "", "Path of inference model");
  27. DEFINE_bool(use_gpu, false, "Infering with GPU or CPU");
  28. DEFINE_bool(use_trt, false, "Infering with TensorRT");
  29. DEFINE_int32(gpu_id, 0, "GPU card id");
  30. DEFINE_string(key, "", "key of encryption");
  31. DEFINE_string(image, "", "Path of test image file");
  32. DEFINE_string(image_list, "", "Path of test image list file");
  33. DEFINE_string(save_dir, "output", "Path to save visualized image");
  34. DEFINE_int32(batch_size, 1, "Batch size of infering");
  35. DEFINE_double(threshold,
  36. 0.5,
  37. "The minimum scores of target boxes which are shown");
  38. DEFINE_int32(thread_num,
  39. omp_get_num_procs(),
  40. "Number of preprocessing threads");
  41. int main(int argc, char** argv) {
  42. // 解析命令行参数
  43. google::ParseCommandLineFlags(&argc, &argv, true);
  44. if (FLAGS_model_dir == "") {
  45. std::cerr << "--model_dir need to be defined" << std::endl;
  46. return -1;
  47. }
  48. if (FLAGS_image == "" & FLAGS_image_list == "") {
  49. std::cerr << "--image or --image_list need to be defined" << std::endl;
  50. return -1;
  51. }
  52. // 加载模型
  53. PaddleX::Model model;
  54. model.Init(FLAGS_model_dir,
  55. FLAGS_use_gpu,
  56. FLAGS_use_trt,
  57. FLAGS_gpu_id,
  58. FLAGS_key);
  59. double total_running_time_s = 0.0;
  60. double total_imread_time_s = 0.0;
  61. int imgs = 1;
  62. auto colormap = PaddleX::GenerateColorMap(model.labels.size());
  63. std::string save_dir = "output";
  64. // 进行预测
  65. if (FLAGS_image_list != "") {
  66. std::ifstream inf(FLAGS_image_list);
  67. if (!inf) {
  68. std::cerr << "Fail to open file " << FLAGS_image_list << std::endl;
  69. return -1;
  70. }
  71. std::string image_path;
  72. std::vector<std::string> image_paths;
  73. while (getline(inf, image_path)) {
  74. image_paths.push_back(image_path);
  75. }
  76. imgs = image_paths.size();
  77. for (int i = 0; i < image_paths.size(); i += FLAGS_batch_size) {
  78. auto start = system_clock::now();
  79. int im_vec_size =
  80. std::min(static_cast<int>(image_paths.size()), i + FLAGS_batch_size);
  81. std::vector<cv::Mat> im_vec(im_vec_size - i);
  82. std::vector<PaddleX::DetResult> results(im_vec_size - i,
  83. PaddleX::DetResult());
  84. int thread_num = std::min(FLAGS_thread_num, im_vec_size - i);
  85. #pragma omp parallel for num_threads(thread_num)
  86. for (int j = i; j < im_vec_size; ++j) {
  87. im_vec[j - i] = std::move(cv::imread(image_paths[j], 1));
  88. }
  89. auto imread_end = system_clock::now();
  90. model.predict(im_vec, &results, thread_num);
  91. auto imread_duration = duration_cast<microseconds>(imread_end - start);
  92. total_imread_time_s += static_cast<double>(imread_duration.count()) *
  93. microseconds::period::num /
  94. microseconds::period::den;
  95. auto end = system_clock::now();
  96. auto duration = duration_cast<microseconds>(end - start);
  97. total_running_time_s += static_cast<double>(duration.count()) *
  98. microseconds::period::num /
  99. microseconds::period::den;
  100. // 输出结果目标框
  101. for (int j = 0; j < im_vec_size - i; ++j) {
  102. for (int k = 0; k < results[j].boxes.size(); ++k) {
  103. std::cout << "image file: " << image_paths[i + j] << ", ";
  104. std::cout << "predict label: " << results[j].boxes[k].category
  105. << ", label_id:" << results[j].boxes[k].category_id
  106. << ", score: " << results[j].boxes[k].score
  107. << ", box(xmin, ymin, w, h):("
  108. << results[j].boxes[k].coordinate[0] << ", "
  109. << results[j].boxes[k].coordinate[1] << ", "
  110. << results[j].boxes[k].coordinate[2] << ", "
  111. << results[j].boxes[k].coordinate[3] << ")" << std::endl;
  112. }
  113. }
  114. // 可视化
  115. for (int j = 0; j < im_vec_size - i; ++j) {
  116. cv::Mat vis_img = PaddleX::Visualize(
  117. im_vec[j], results[j], model.labels, colormap, FLAGS_threshold);
  118. std::string save_path =
  119. PaddleX::generate_save_path(FLAGS_save_dir, image_paths[i + j]);
  120. cv::imwrite(save_path, vis_img);
  121. std::cout << "Visualized output saved as " << save_path << std::endl;
  122. }
  123. }
  124. } else {
  125. auto start = system_clock::now();
  126. PaddleX::DetResult result;
  127. cv::Mat im = cv::imread(FLAGS_image, 1);
  128. model.predict(im, &result);
  129. auto end = system_clock::now();
  130. auto duration = duration_cast<microseconds>(end - start);
  131. total_running_time_s += static_cast<double>(duration.count()) *
  132. microseconds::period::num /
  133. microseconds::period::den;
  134. // 输出结果目标框
  135. for (int i = 0; i < result.boxes.size(); ++i) {
  136. std::cout << "image file: " << FLAGS_image << std::endl;
  137. std::cout << ", predict label: " << result.boxes[i].category
  138. << ", label_id:" << result.boxes[i].category_id
  139. << ", score: " << result.boxes[i].score
  140. << ", box(xmin, ymin, w, h):(" << result.boxes[i].coordinate[0]
  141. << ", " << result.boxes[i].coordinate[1] << ", "
  142. << result.boxes[i].coordinate[2] << ", "
  143. << result.boxes[i].coordinate[3] << ")" << std::endl;
  144. }
  145. // 可视化
  146. cv::Mat vis_img =
  147. PaddleX::Visualize(im, result, model.labels, colormap, FLAGS_threshold);
  148. std::string save_path =
  149. PaddleX::generate_save_path(FLAGS_save_dir, FLAGS_image);
  150. cv::imwrite(save_path, vis_img);
  151. result.clear();
  152. std::cout << "Visualized output saved as " << save_path << std::endl;
  153. }
  154. std::cout << "Total running time: " << total_running_time_s
  155. << " s, average running time: " << total_running_time_s / imgs
  156. << " s/img, total read img time: " << total_imread_time_s
  157. << " s, average read img time: " << total_imread_time_s / imgs
  158. << " s, batch_size = " << FLAGS_batch_size << std::endl;
  159. return 0;
  160. }