| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import sys
- import glob
- import os
- import os.path as osp
- import platform
- import random
- import numpy as np
- import multiprocessing as mp
- import paddle
- from . import logging
- def get_environ_info():
- """collect environment information"""
- env_info = dict()
- # TODO is_compiled_with_cuda() has not been moved
- compiled_with_cuda = paddle.is_compiled_with_cuda()
- if compiled_with_cuda:
- if 'gpu' in paddle.get_device():
- gpu_nums = paddle.distributed.get_world_size()
- else:
- gpu_nums = 0
- if gpu_nums == 0:
- os.environ['CUDA_VISIBLE_DEVICES'] = ''
- place = 'gpu' if compiled_with_cuda and gpu_nums else 'cpu'
- env_info['place'] = place
- env_info['num'] = int(os.environ.get('CPU_NUM', 1))
- if place == 'gpu':
- env_info['num'] = gpu_nums
- return env_info
- def get_num_workers(num_workers):
- if not platform.system() == 'Linux':
- # Dataloader with multi-process model is not supported
- # on MacOS and Windows currently.
- return 0
- if num_workers == 'auto':
- num_workers = mp.cpu_count() // 2 if mp.cpu_count() // 2 < 2 else 2
- return num_workers
- def init_parallel_env():
- env = os.environ
- if 'FLAGS_allocator_strategy' not in os.environ:
- os.environ['FLAGS_allocator_strategy'] = 'auto_growth'
- dist = 'PADDLE_TRAINER_ID' in env and 'PADDLE_TRAINERS_NUM' in env
- if dist:
- trainer_id = int(env['PADDLE_TRAINER_ID'])
- local_seed = (99 + trainer_id)
- random.seed(local_seed)
- np.random.seed(local_seed)
- if paddle.distributed.get_world_size() > 1:
- paddle.distributed.init_parallel_env()
|