7.train_ppyolov2_r101_aug_COCO_addneg.py 2.0 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162
  1. # coding:utf-8
  2. import os
  3. # 选择使用0号卡
  4. os.environ['CUDA_VISIBLE_DEVICES'] = '0'
  5. import paddlex as pdx
  6. from paddlex import transforms as T
  7. # 定义训练和验证时的transforms
  8. train_transforms = T.Compose([
  9. T.MixupImage(mixup_epoch=-1), T.RandomDistort(),
  10. T.RandomExpand(im_padding_value=[123.675, 116.28, 103.53]), T.RandomCrop(),
  11. T.RandomHorizontalFlip(), T.BatchRandomResize(
  12. target_sizes=[
  13. 320, 352, 384, 416, 448, 480, 512, 544, 576, 608, 640, 672, 704,
  14. 736, 768
  15. ],
  16. interp='RANDOM'), T.Normalize(
  17. mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
  18. ])
  19. eval_transforms = T.Compose([
  20. T.Resize(
  21. target_size=640, interp='CUBIC'), T.Normalize(
  22. mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
  23. ])
  24. # 定义训练和验证所用的数据集
  25. train_dataset = pdx.datasets.VOCDetection(
  26. data_dir='/home/aistudio/dataset',
  27. file_list='/home/aistudio/dataset/train_list.txt',
  28. label_list='/home/aistudio/dataset/labels.txt',
  29. transforms=train_transforms,
  30. num_workers=0,
  31. shuffle=True)
  32. eval_dataset = pdx.datasets.VOCDetection(
  33. data_dir='/home/aistudio/dataset',
  34. file_list='/home/aistudio/dataset/val_list.txt',
  35. label_list='/home/aistudio/dataset/labels.txt',
  36. transforms=eval_transforms,
  37. num_workers=0,
  38. shuffle=False)
  39. # 初始化模型,并进行训练
  40. train_dataset.add_negative_samples(image_dir='.//home/aistudio/dataset/train_neg')
  41. # API说明: https://paddlex.readthedocs.io/zh_CN/develop/apis/models/detection.html#paddlex-det-yolov3
  42. num_classes = len(train_dataset.labels)
  43. model = pdx.det.PPYOLOv2(num_classes=num_classes, backbone='ResNet101_vd_dcn')
  44. model.train(
  45. num_epochs=400,
  46. train_dataset=train_dataset,
  47. train_batch_size=8,
  48. eval_dataset=eval_dataset,
  49. pretrain_weights='COCO',
  50. learning_rate=0.000125,
  51. warmup_steps=1000,
  52. warmup_start_lr=0.0,
  53. lr_decay_epochs=[210,240],
  54. save_interval_epochs=5,
  55. save_dir='output/ppyolov2_r101vd_dcn_aug_coco_addneg')