| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from .operators import *
- from .batch_operators import BatchRandomResize, BatchRandomResizeByShort, _BatchPadding
- from paddlex.cv import transforms as T
- def arrange_transforms(model_type, transforms, mode='train'):
- # 给transforms添加arrange操作
- if model_type == 'segmenter':
- if mode == 'eval':
- transforms.apply_im_only = True
- else:
- transforms.apply_im_only = False
- arrange_transform = ArrangeSegmenter(mode)
- elif model_type == 'classifier':
- arrange_transform = ArrangeClassifier(mode)
- elif model_type == 'detector':
- arrange_transform = ArrangeDetector(mode)
- else:
- raise Exception("Unrecognized model type: {}".format(model_type))
- transforms.arrange_outputs = arrange_transform
- def build_transforms(transforms_info):
- transforms = list()
- for op_info in transforms_info:
- op_name = list(op_info.keys())[0]
- op_attr = op_info[op_name]
- if not hasattr(T, op_name):
- raise Exception("There's no transform named '{}'".format(op_name))
- transforms.append(getattr(T, op_name)(**op_attr))
- eval_transforms = T.Compose(transforms)
- return eval_transforms
|