| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import cv2
- import numpy as np
- import shapely.ops
- from shapely.geometry import Polygon, MultiPolygon, GeometryCollection
- import copy
- def normalize(im, mean, std, min_value=[0, 0, 0], max_value=[255, 255, 255]):
- # Rescaling (min-max normalization)
- range_value = np.asarray(
- [1. / (max_value[i] - min_value[i]) for i in range(len(max_value))],
- dtype=np.float32)
- im = (im - np.asarray(min_value, dtype=np.float32)) * range_value
- # Standardization (Z-score Normalization)
- im -= mean
- im /= std
- return im
- def permute(im, to_bgr=False):
- im = np.swapaxes(im, 1, 2)
- im = np.swapaxes(im, 1, 0)
- if to_bgr:
- im = im[[2, 1, 0], :, :]
- return im
- def center_crop(im, crop_size=224):
- height, width = im.shape[:2]
- w_start = (width - crop_size) // 2
- h_start = (height - crop_size) // 2
- w_end = w_start + crop_size
- h_end = h_start + crop_size
- im = im[h_start:h_end, w_start:w_end, ...]
- return im
- def horizontal_flip(im):
- im = im[:, ::-1, ...]
- return im
- def vertical_flip(im):
- im = im[::-1, :, ...]
- return im
- def rgb2bgr(im):
- return im[:, :, ::-1]
- def is_poly(poly):
- assert isinstance(poly, (list, dict)), \
- "Invalid poly type: {}".format(type(poly))
- return isinstance(poly, list)
- def horizontal_flip_poly(poly, width):
- flipped_poly = np.array(poly)
- flipped_poly[0::2] = width - np.array(poly[0::2])
- return flipped_poly.tolist()
- def horizontal_flip_rle(rle, height, width):
- import pycocotools.mask as mask_util
- if 'counts' in rle and type(rle['counts']) == list:
- rle = mask_util.frPyObjects(rle, height, width)
- mask = mask_util.decode(rle)
- mask = mask[:, ::-1]
- rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8))
- return rle
- def vertical_flip_poly(poly, height):
- flipped_poly = np.array(poly)
- flipped_poly[1::2] = height - np.array(poly[1::2])
- return flipped_poly.tolist()
- def vertical_flip_rle(rle, height, width):
- import pycocotools.mask as mask_util
- if 'counts' in rle and type(rle['counts']) == list:
- rle = mask_util.frPyObjects(rle, height, width)
- mask = mask_util.decode(rle)
- mask = mask[::-1, :]
- rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8))
- return rle
- def crop_poly(segm, crop):
- xmin, ymin, xmax, ymax = crop
- crop_coord = [xmin, ymin, xmin, ymax, xmax, ymax, xmax, ymin]
- crop_p = np.array(crop_coord).reshape(4, 2)
- crop_p = Polygon(crop_p)
- crop_segm = list()
- for poly in segm:
- poly = np.array(poly).reshape(len(poly) // 2, 2)
- polygon = Polygon(poly)
- if not polygon.is_valid:
- exterior = polygon.exterior
- multi_lines = exterior.intersection(exterior)
- polygons = shapely.ops.polygonize(multi_lines)
- polygon = MultiPolygon(polygons)
- multi_polygon = list()
- if isinstance(polygon, MultiPolygon):
- multi_polygon = copy.deepcopy(polygon)
- else:
- multi_polygon.append(copy.deepcopy(polygon))
- for per_polygon in multi_polygon:
- inter = per_polygon.intersection(crop_p)
- if not inter:
- continue
- if isinstance(inter, (MultiPolygon, GeometryCollection)):
- for part in inter:
- if not isinstance(part, Polygon):
- continue
- part = np.squeeze(
- np.array(part.exterior.coords[:-1]).reshape(1, -1))
- part[0::2] -= xmin
- part[1::2] -= ymin
- crop_segm.append(part.tolist())
- elif isinstance(inter, Polygon):
- crop_poly = np.squeeze(
- np.array(inter.exterior.coords[:-1]).reshape(1, -1))
- crop_poly[0::2] -= xmin
- crop_poly[1::2] -= ymin
- crop_segm.append(crop_poly.tolist())
- else:
- continue
- return crop_segm
- def crop_rle(rle, crop, height, width):
- import pycocotools.mask as mask_util
- if 'counts' in rle and type(rle['counts']) == list:
- rle = mask_util.frPyObjects(rle, height, width)
- mask = mask_util.decode(rle)
- mask = mask[crop[1]:crop[3], crop[0]:crop[2]]
- rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8))
- return rle
- def expand_poly(poly, x, y):
- expanded_poly = np.array(poly)
- expanded_poly[0::2] += x
- expanded_poly[1::2] += y
- return expanded_poly.tolist()
- def expand_rle(rle, x, y, height, width, h, w):
- import pycocotools.mask as mask_util
- if 'counts' in rle and type(rle['counts']) == list:
- rle = mask_util.frPyObjects(rle, height, width)
- mask = mask_util.decode(rle)
- expanded_mask = np.full((h, w), 0).astype(mask.dtype)
- expanded_mask[y:y + height, x:x + width] = mask
- rle = mask_util.encode(np.array(expanded_mask, order='F', dtype=np.uint8))
- return rle
- def resize_poly(poly, im_scale_x, im_scale_y):
- resized_poly = np.array(poly, dtype=np.float32)
- resized_poly[0::2] *= im_scale_x
- resized_poly[1::2] *= im_scale_y
- return resized_poly.tolist()
- def resize_rle(rle, im_h, im_w, im_scale_x, im_scale_y, interp):
- import pycocotools.mask as mask_util
- if 'counts' in rle and type(rle['counts']) == list:
- rle = mask_util.frPyObjects(rle, im_h, im_w)
- mask = mask_util.decode(rle)
- mask = cv2.resize(
- mask, None, None, fx=im_scale_x, fy=im_scale_y, interpolation=interp)
- rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8))
- return rle
|