| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326 |
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import (absolute_import, division, print_function,
- unicode_literals)
- from paddle.optimizer import lr
- from paddle.optimizer.lr import LRScheduler
- from paddlex.ppcls.utils import logger
- class Linear(object):
- """
- Linear learning rate decay
- Args:
- lr (float): The initial learning rate. It is a python float number.
- epochs(int): The decay step size. It determines the decay cycle.
- end_lr(float, optional): The minimum final learning rate. Default: 0.0001.
- power(float, optional): Power of polynomial. Default: 1.0.
- warmup_epoch(int): The epoch numbers for LinearWarmup. Default: 0.
- warmup_start_lr(float): Initial learning rate of warm up. Default: 0.0.
- last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
- """
- def __init__(self,
- learning_rate,
- epochs,
- step_each_epoch,
- end_lr=0.0,
- power=1.0,
- warmup_epoch=0,
- warmup_start_lr=0.0,
- last_epoch=-1,
- **kwargs):
- super().__init__()
- if warmup_epoch >= epochs:
- msg = f"When using warm up, the value of \"Global.epochs\" must be greater than value of \"Optimizer.lr.warmup_epoch\". The value of \"Optimizer.lr.warmup_epoch\" has been set to {epochs}."
- logger.warning(msg)
- warmup_epoch = epochs
- self.learning_rate = learning_rate
- self.steps = (epochs - warmup_epoch) * step_each_epoch
- self.end_lr = end_lr
- self.power = power
- self.last_epoch = last_epoch
- self.warmup_steps = round(warmup_epoch * step_each_epoch)
- self.warmup_start_lr = warmup_start_lr
- def __call__(self):
- learning_rate = lr.PolynomialDecay(
- learning_rate=self.learning_rate,
- decay_steps=self.steps,
- end_lr=self.end_lr,
- power=self.power,
- last_epoch=self.
- last_epoch) if self.steps > 0 else self.learning_rate
- if self.warmup_steps > 0:
- learning_rate = lr.LinearWarmup(
- learning_rate=learning_rate,
- warmup_steps=self.warmup_steps,
- start_lr=self.warmup_start_lr,
- end_lr=self.learning_rate,
- last_epoch=self.last_epoch)
- return learning_rate
- class Cosine(object):
- """
- Cosine learning rate decay
- lr = 0.05 * (math.cos(epoch * (math.pi / epochs)) + 1)
- Args:
- lr(float): initial learning rate
- step_each_epoch(int): steps each epoch
- epochs(int): total training epochs
- eta_min(float): Minimum learning rate. Default: 0.0.
- warmup_epoch(int): The epoch numbers for LinearWarmup. Default: 0.
- warmup_start_lr(float): Initial learning rate of warm up. Default: 0.0.
- last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
- """
- def __init__(self,
- learning_rate,
- step_each_epoch,
- epochs,
- eta_min=0.0,
- warmup_epoch=0,
- warmup_start_lr=0.0,
- last_epoch=-1,
- **kwargs):
- super().__init__()
- if warmup_epoch >= epochs:
- msg = f"When using warm up, the value of \"Global.epochs\" must be greater than value of \"Optimizer.lr.warmup_epoch\". The value of \"Optimizer.lr.warmup_epoch\" has been set to {epochs}."
- logger.warning(msg)
- warmup_epoch = epochs
- self.learning_rate = learning_rate
- self.T_max = (epochs - warmup_epoch) * step_each_epoch
- self.eta_min = eta_min
- self.last_epoch = last_epoch
- self.warmup_steps = round(warmup_epoch * step_each_epoch)
- self.warmup_start_lr = warmup_start_lr
- def __call__(self):
- learning_rate = lr.CosineAnnealingDecay(
- learning_rate=self.learning_rate,
- T_max=self.T_max,
- eta_min=self.eta_min,
- last_epoch=self.
- last_epoch) if self.T_max > 0 else self.learning_rate
- if self.warmup_steps > 0:
- learning_rate = lr.LinearWarmup(
- learning_rate=learning_rate,
- warmup_steps=self.warmup_steps,
- start_lr=self.warmup_start_lr,
- end_lr=self.learning_rate,
- last_epoch=self.last_epoch)
- return learning_rate
- class Step(object):
- """
- Piecewise learning rate decay
- Args:
- step_each_epoch(int): steps each epoch
- learning_rate (float): The initial learning rate. It is a python float number.
- step_size (int): the interval to update.
- gamma (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * gamma`` .
- It should be less than 1.0. Default: 0.1.
- warmup_epoch(int): The epoch numbers for LinearWarmup. Default: 0.
- warmup_start_lr(float): Initial learning rate of warm up. Default: 0.0.
- last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
- """
- def __init__(self,
- learning_rate,
- step_size,
- step_each_epoch,
- epochs,
- gamma,
- warmup_epoch=0,
- warmup_start_lr=0.0,
- last_epoch=-1,
- **kwargs):
- super().__init__()
- if warmup_epoch >= epochs:
- msg = f"When using warm up, the value of \"Global.epochs\" must be greater than value of \"Optimizer.lr.warmup_epoch\". The value of \"Optimizer.lr.warmup_epoch\" has been set to {epochs}."
- logger.warning(msg)
- warmup_epoch = epochs
- self.step_size = step_each_epoch * step_size
- self.learning_rate = learning_rate
- self.gamma = gamma
- self.last_epoch = last_epoch
- self.warmup_steps = round(warmup_epoch * step_each_epoch)
- self.warmup_start_lr = warmup_start_lr
- def __call__(self):
- learning_rate = lr.StepDecay(
- learning_rate=self.learning_rate,
- step_size=self.step_size,
- gamma=self.gamma,
- last_epoch=self.last_epoch)
- if self.warmup_steps > 0:
- learning_rate = lr.LinearWarmup(
- learning_rate=learning_rate,
- warmup_steps=self.warmup_steps,
- start_lr=self.warmup_start_lr,
- end_lr=self.learning_rate,
- last_epoch=self.last_epoch)
- return learning_rate
- class Piecewise(object):
- """
- Piecewise learning rate decay
- Args:
- boundaries(list): A list of steps numbers. The type of element in the list is python int.
- values(list): A list of learning rate values that will be picked during different epoch boundaries.
- The type of element in the list is python float.
- warmup_epoch(int): The epoch numbers for LinearWarmup. Default: 0.
- warmup_start_lr(float): Initial learning rate of warm up. Default: 0.0.
- last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
- """
- def __init__(self,
- step_each_epoch,
- decay_epochs,
- values,
- epochs,
- warmup_epoch=0,
- warmup_start_lr=0.0,
- last_epoch=-1,
- **kwargs):
- super().__init__()
- if warmup_epoch >= epochs:
- msg = f"When using warm up, the value of \"Global.epochs\" must be greater than value of \"Optimizer.lr.warmup_epoch\". The value of \"Optimizer.lr.warmup_epoch\" has been set to {epochs}."
- logger.warning(msg)
- warmup_epoch = epochs
- self.boundaries = [step_each_epoch * e for e in decay_epochs]
- self.values = values
- self.last_epoch = last_epoch
- self.warmup_steps = round(warmup_epoch * step_each_epoch)
- self.warmup_start_lr = warmup_start_lr
- def __call__(self):
- learning_rate = lr.PiecewiseDecay(
- boundaries=self.boundaries,
- values=self.values,
- last_epoch=self.last_epoch)
- if self.warmup_steps > 0:
- learning_rate = lr.LinearWarmup(
- learning_rate=learning_rate,
- warmup_steps=self.warmup_steps,
- start_lr=self.warmup_start_lr,
- end_lr=self.values[0],
- last_epoch=self.last_epoch)
- return learning_rate
- class MultiStepDecay(LRScheduler):
- """
- Update the learning rate by ``gamma`` once ``epoch`` reaches one of the milestones.
- The algorithm can be described as the code below.
- .. code-block:: text
- learning_rate = 0.5
- milestones = [30, 50]
- gamma = 0.1
- if epoch < 30:
- learning_rate = 0.5
- elif epoch < 50:
- learning_rate = 0.05
- else:
- learning_rate = 0.005
- Args:
- learning_rate (float): The initial learning rate. It is a python float number.
- milestones (tuple|list): List or tuple of each boundaries. Must be increasing.
- gamma (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * gamma`` .
- It should be less than 1.0. Default: 0.1.
- last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
- verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .
- Returns:
- ``MultiStepDecay`` instance to schedule learning rate.
- Examples:
- .. code-block:: python
- import paddle
- import numpy as np
- # train on default dynamic graph mode
- linear = paddle.nn.Linear(10, 10)
- scheduler = paddle.optimizer.lr.MultiStepDecay(learning_rate=0.5, milestones=[2, 4, 6], gamma=0.8, verbose=True)
- sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
- for epoch in range(20):
- for batch_id in range(5):
- x = paddle.uniform([10, 10])
- out = linear(x)
- loss = paddle.mean(out)
- loss.backward()
- sgd.step()
- sgd.clear_gradients()
- scheduler.step() # If you update learning rate each step
- # scheduler.step() # If you update learning rate each epoch
- # train on static graph mode
- paddle.enable_static()
- main_prog = paddle.static.Program()
- start_prog = paddle.static.Program()
- with paddle.static.program_guard(main_prog, start_prog):
- x = paddle.static.data(name='x', shape=[None, 4, 5])
- y = paddle.static.data(name='y', shape=[None, 4, 5])
- z = paddle.static.nn.fc(x, 100)
- loss = paddle.mean(z)
- scheduler = paddle.optimizer.lr.MultiStepDecay(learning_rate=0.5, milestones=[2, 4, 6], gamma=0.8, verbose=True)
- sgd = paddle.optimizer.SGD(learning_rate=scheduler)
- sgd.minimize(loss)
- exe = paddle.static.Executor()
- exe.run(start_prog)
- for epoch in range(20):
- for batch_id in range(5):
- out = exe.run(
- main_prog,
- feed={
- 'x': np.random.randn(3, 4, 5).astype('float32'),
- 'y': np.random.randn(3, 4, 5).astype('float32')
- },
- fetch_list=loss.name)
- scheduler.step() # If you update learning rate each step
- # scheduler.step() # If you update learning rate each epoch
- """
- def __init__(self,
- learning_rate,
- milestones,
- epochs,
- step_each_epoch,
- gamma=0.1,
- last_epoch=-1,
- verbose=False):
- if not isinstance(milestones, (tuple, list)):
- raise TypeError(
- "The type of 'milestones' in 'MultiStepDecay' must be 'tuple, list', but received %s."
- % type(milestones))
- if not all([
- milestones[i] < milestones[i + 1]
- for i in range(len(milestones) - 1)
- ]):
- raise ValueError('The elements of milestones must be incremented')
- if gamma >= 1.0:
- raise ValueError('gamma should be < 1.0.')
- self.milestones = [x * step_each_epoch for x in milestones]
- self.gamma = gamma
- super().__init__(learning_rate, last_epoch, verbose)
- def get_lr(self):
- for i in range(len(self.milestones)):
- if self.last_epoch < self.milestones[i]:
- return self.base_lr * (self.gamma**i)
- return self.base_lr * (self.gamma**len(self.milestones))
|