mobilenetv2_prune.py 2.2 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556
  1. import paddlex as pdx
  2. from paddlex import transforms as T
  3. # 下载和解压蔬菜分类数据集
  4. veg_dataset = 'https://bj.bcebos.com/paddlex/datasets/vegetables_cls.tar.gz'
  5. pdx.utils.download_and_decompress(veg_dataset, path='./')
  6. # 定义训练和验证时的transforms
  7. # API说明https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/apis/transforms/transforms.md
  8. train_transforms = T.Compose(
  9. [T.RandomCrop(crop_size=224), T.RandomHorizontalFlip(), T.Normalize()])
  10. eval_transforms = T.Compose([
  11. T.ResizeByShort(short_size=256), T.CenterCrop(crop_size=224), T.Normalize()
  12. ])
  13. # 定义训练和验证所用的数据集
  14. # API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/apis/datasets.md
  15. train_dataset = pdx.datasets.ImageNet(
  16. data_dir='vegetables_cls',
  17. file_list='vegetables_cls/train_list.txt',
  18. label_list='vegetables_cls/labels.txt',
  19. transforms=train_transforms,
  20. shuffle=True)
  21. eval_dataset = pdx.datasets.ImageNet(
  22. data_dir='vegetables_cls',
  23. file_list='vegetables_cls/val_list.txt',
  24. label_list='vegetables_cls/labels.txt',
  25. transforms=eval_transforms)
  26. # 加载模型
  27. model = pdx.load_model('output/mobilenet_v2/best_model')
  28. # Step 1/3: 分析模型各层参数在不同的剪裁比例下的敏感度
  29. # API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/apis/models/classification.md#analyze_sensitivity
  30. model.analyze_sensitivity(
  31. dataset=eval_dataset, save_dir='output/mobilenet_v2/prune')
  32. # Step 2/3: 根据选择的FLOPs减小比例对模型进行剪裁
  33. # API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/apis/models/classification.md#prune
  34. model.prune(pruned_flops=.2)
  35. # Step 3/3: 对剪裁后的模型重新训练
  36. # API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/apis/models/classification.md#train
  37. # 各参数介绍与调整说明:https://github.com/PaddlePaddle/PaddleX/tree/develop/docs/parameters.md
  38. model.train(
  39. num_epochs=10,
  40. train_dataset=train_dataset,
  41. train_batch_size=32,
  42. eval_dataset=eval_dataset,
  43. lr_decay_epochs=[4, 6, 8],
  44. learning_rate=0.025,
  45. pretrain_weights=None,
  46. save_dir='output/mobilenet_v2/prune',
  47. use_vdl=True)