mask_rcnn_r18_fpn.py 2.5 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162
  1. # 环境变量配置,用于控制是否使用GPU
  2. # 说明文档:https://paddlex.readthedocs.io/zh_CN/develop/appendix/parameters.html#gpu
  3. import os
  4. os.environ['CUDA_VISIBLE_DEVICES'] = '0'
  5. from paddlex.det import transforms
  6. import paddlex as pdx
  7. # 下载和解压小度熊分拣数据集
  8. xiaoduxiong_dataset = 'https://bj.bcebos.com/paddlex/datasets/xiaoduxiong_ins_det.tar.gz'
  9. pdx.utils.download_and_decompress(xiaoduxiong_dataset, path='./')
  10. # 定义训练和验证时的transforms
  11. # API说明 https://paddlex.readthedocs.io/zh_CN/develop/apis/transforms/det_transforms.html
  12. train_transforms = transforms.Compose([
  13. transforms.RandomHorizontalFlip(),
  14. transforms.Normalize(),
  15. transforms.ResizeByShort(short_size=800, max_size=1333),
  16. transforms.Padding(coarsest_stride=32)
  17. ])
  18. eval_transforms = transforms.Compose([
  19. transforms.Normalize(),
  20. transforms.ResizeByShort(short_size=800, max_size=1333),
  21. transforms.Padding(coarsest_stride=32)
  22. ])
  23. # 定义训练和验证所用的数据集
  24. # API说明:https://paddlex.readthedocs.io/zh_CN/develop/apis/datasets.html#paddlex-datasets-cocodetection
  25. train_dataset = pdx.datasets.CocoDetection(
  26. data_dir='xiaoduxiong_ins_det/JPEGImages',
  27. ann_file='xiaoduxiong_ins_det/train.json',
  28. transforms=train_transforms,
  29. shuffle=True)
  30. eval_dataset = pdx.datasets.CocoDetection(
  31. data_dir='xiaoduxiong_ins_det/JPEGImages',
  32. ann_file='xiaoduxiong_ins_det/val.json',
  33. transforms=eval_transforms)
  34. # 初始化模型,并进行训练
  35. # 可使用VisualDL查看训练指标
  36. # VisualDL启动方式: visualdl --logdir output/mask_rcnn_r50_fpn/vdl_log --port 8001
  37. # 浏览器打开 https://0.0.0.0:8001即可
  38. # 其中0.0.0.0为本机访问,如为远程服务, 改成相应机器IP
  39. # num_classes 需要设置为包含背景类的类别数,即: 目标类别数量 + 1
  40. num_classes = len(train_dataset.labels) + 1
  41. # API说明:https://paddlex.readthedocs.io/zh_CN/develop/apis/models/instance_segmentation.html#maskrcnn
  42. model = pdx.det.MaskRCNN(num_classes=num_classes, backbone='ResNet18')
  43. # API说明:https://paddlex.readthedocs.io/zh_CN/develop/apis/models/instance_segmentation.html#train
  44. # 各参数介绍与调整说明:https://paddlex.readthedocs.io/zh_CN/develop/appendix/parameters.html
  45. model.train(
  46. num_epochs=12,
  47. train_dataset=train_dataset,
  48. train_batch_size=1,
  49. eval_dataset=eval_dataset,
  50. learning_rate=0.00125,
  51. warmup_steps=10,
  52. lr_decay_epochs=[8, 11],
  53. save_dir='output/mask_rcnn_r18_fpn',
  54. use_vdl=True)