yolov3_darknet53.py 2.4 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364
  1. # 环境变量配置,用于控制是否使用GPU
  2. # 说明文档:https://paddlex.readthedocs.io/zh_CN/develop/appendix/parameters.html#gpu
  3. import os
  4. os.environ['CUDA_VISIBLE_DEVICES'] = '0'
  5. from paddlex.det import transforms
  6. import paddlex as pdx
  7. # 下载和解压昆虫检测数据集
  8. insect_dataset = 'https://bj.bcebos.com/paddlex/datasets/insect_det.tar.gz'
  9. pdx.utils.download_and_decompress(insect_dataset, path='./')
  10. # 定义训练和验证时的transforms
  11. # API说明 https://paddlex.readthedocs.io/zh_CN/develop/apis/transforms/det_transforms.html
  12. train_transforms = transforms.Compose([
  13. transforms.MixupImage(mixup_epoch=250),
  14. transforms.RandomDistort(),
  15. transforms.RandomExpand(),
  16. transforms.RandomCrop(),
  17. transforms.Resize(target_size=608, interp='RANDOM'),
  18. transforms.RandomHorizontalFlip(),
  19. transforms.Normalize()
  20. ])
  21. eval_transforms = transforms.Compose([
  22. transforms.Resize(target_size=608, interp='CUBIC'),
  23. transforms.Normalize()
  24. ])
  25. # 定义训练和验证所用的数据集
  26. # API说明:https://paddlex.readthedocs.io/zh_CN/develop/apis/datasets.html#paddlex-datasets-vocdetection
  27. train_dataset = pdx.datasets.VOCDetection(
  28. data_dir='insect_det',
  29. file_list='insect_det/train_list.txt',
  30. label_list='insect_det/labels.txt',
  31. transforms=train_transforms,
  32. shuffle=True)
  33. eval_dataset = pdx.datasets.VOCDetection(
  34. data_dir='insect_det',
  35. file_list='insect_det/val_list.txt',
  36. label_list='insect_det/labels.txt',
  37. transforms=eval_transforms)
  38. # 初始化模型,并进行训练
  39. # 可使用VisualDL查看训练指标
  40. # VisualDL启动方式: visualdl --logdir output/yolov3_darknet/vdl_log --port 8001
  41. # 浏览器打开 https://0.0.0.0:8001即可
  42. # 其中0.0.0.0为本机访问,如为远程服务, 改成相应机器IP
  43. num_classes = len(train_dataset.labels)
  44. # API说明: https://paddlex.readthedocs.io/zh_CN/develop/apis/models/detection.html#paddlex-det-yolov3
  45. model = pdx.det.YOLOv3(num_classes=num_classes, backbone='DarkNet53')
  46. # API说明: https://paddlex.readthedocs.io/zh_CN/develop/apis/models/detection.html#train
  47. # 各参数介绍与调整说明:https://paddlex.readthedocs.io/zh_CN/develop/appendix/parameters.html
  48. model.train(
  49. num_epochs=270,
  50. train_dataset=train_dataset,
  51. train_batch_size=8,
  52. eval_dataset=eval_dataset,
  53. learning_rate=0.000125,
  54. lr_decay_epochs=[210, 240],
  55. save_dir='output/yolov3_darknet53',
  56. use_vdl=True)