| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162 |
- # 环境变量配置,用于控制是否使用GPU
- # 说明文档:https://paddlex.readthedocs.io/zh_CN/develop/appendix/parameters.html#gpu
- import os
- os.environ['CUDA_VISIBLE_DEVICES'] = '0'
- import paddlex as pdx
- from paddlex.seg import transforms
- # 下载和解压视盘分割数据集
- optic_dataset = 'https://bj.bcebos.com/paddlex/datasets/optic_disc_seg.tar.gz'
- pdx.utils.download_and_decompress(optic_dataset, path='./')
- # 定义训练和验证时的transforms
- # API说明 https://paddlex.readthedocs.io/zh_CN/develop/apis/transforms/seg_transforms.html
- train_transforms = transforms.Compose([
- transforms.RandomHorizontalFlip(),
- transforms.ResizeRangeScaling(),
- transforms.RandomPaddingCrop(crop_size=512),
- transforms.Normalize()
- ])
- eval_transforms = transforms.Compose([
- transforms.ResizeByLong(long_size=512),
- transforms.Padding(target_size=512),
- transforms.Normalize()
- ])
- # 定义训练和验证所用的数据集
- # API说明:https://paddlex.readthedocs.io/zh_CN/develop/apis/datasets.html#paddlex-datasets-segdataset
- train_dataset = pdx.datasets.SegDataset(
- data_dir='optic_disc_seg',
- file_list='optic_disc_seg/train_list.txt',
- label_list='optic_disc_seg/labels.txt',
- transforms=train_transforms,
- shuffle=True)
- eval_dataset = pdx.datasets.SegDataset(
- data_dir='optic_disc_seg',
- file_list='optic_disc_seg/val_list.txt',
- label_list='optic_disc_seg/labels.txt',
- transforms=eval_transforms)
- # 初始化模型,并进行训练
- # 可使用VisualDL查看训练指标
- # VisualDL启动方式: visualdl --logdir output/deeplab/vdl_log --port 8001
- # 浏览器打开 https://0.0.0.0:8001即可
- # 其中0.0.0.0为本机访问,如为远程服务, 改成相应机器IP
- num_classes = len(train_dataset.labels)
- # API说明:https://paddlex.readthedocs.io/zh_CN/develop/apis/models/semantic_segmentation.html#paddlex-seg-deeplabv3p
- model = pdx.seg.DeepLabv3p(num_classes=num_classes, backbone='MobileNetV2_x1.0')
- # API说明:https://paddlex.readthedocs.io/zh_CN/develop/apis/models/semantic_segmentation.html#train
- # 各参数介绍与调整说明:https://paddlex.readthedocs.io/zh_CN/develop/appendix/parameters.html
- model.train(
- num_epochs=40,
- train_dataset=train_dataset,
- train_batch_size=4,
- eval_dataset=eval_dataset,
- learning_rate=0.01,
- save_dir='output/deeplabv3p_mobilenetv2',
- use_vdl=True)
|