PaddleX incorporates multiple pipelines, each containing several modules, and each module encompasses various models. The specific models to use can be selected based on the benchmark data below. If you prioritize model accuracy, choose models with higher accuracy. If you prioritize model storage size, select models with smaller storage sizes.
| Model Name | Top-1 Accuracy (%) | Model Storage Size (M) | Model Download Link |
|---|---|---|---|
| ResNet18 | 71.0 | 41.5 M | Inference Model/Training Model |
| ResNet34 | 74.6 | 77.3 M | Inference Model/Training Model |
| ResNet50 | 76.5 | 90.8 M | Inference Model/Training Model |
| ResNet101 | 77.6 | 158.7 M | Inference Model/Training Model |
| ResNet152 | 78.3 | 214.2 M | Inference Model/Training Model |
| PP-LCNet_x1_0 | 71.32 | 10.5 M | Inference Model/Training Model |
| Model Name | mAP (%) | Model Storage Size | Model Download Link |
|---|---|---|---|
| CLIP_vit_base_patch16_448_ML | 89.15 | 325.6 M | Inference Model/Training Model |
| PP-HGNetV2-B0_ML | 80.98 | 39.6 M | Inference Model/Training Model |
| PP-HGNetV2-B4_ML | 87.96 | 88.5 M | Inference Model/Training Model |
| PP-HGNetV2-B6_ML | 91.06 | 286.5 M | Inference Model/Training Model |
| Model Name | recall@1(%) | Model Size | Model Download Link |
|---|---|---|---|
| PP-ShiTuV2_rec_CLIP_vit_base | 88.69 | 306.6 M | Inference Model/Training Model |
| Model Name | mAP (%) | Model Size (M) | Model Download Link |
|---|---|---|---|
| PicoDet-L | 42.6 | 20.9 M | Inference Model/Training Model |
| PicoDet-M | 37.5 | 16.8 M | Inference Model/Training Model |
| PicoDet-S | 29.1 | 4.4 M | Inference Model/Training Model |
| PicoDet-XS | 26.2 | 5.7M | Inference Model/Training Model |
| PP-YOLOE_plus-L | 52.9 | 185.3 M | Inference Model/Training Model |
| PP-YOLOE_plus-M | 49.8 | 83.2 M | Inference Model/Training Model |
| PP-YOLOE_plus-S | 43.7 | 28.3 M | Inference Model/Training Model |
| PP-YOLOE_plus-X | 54.7 | 349.4 M | Inference Model/Training Model |
| RT-DETR-R18 | 46.5 | 70.7 M | Inference Model/Training Model |
| FCOS-ResNet50 | 39.6 | 124.2 M | Inference Model/Training Model |
| YOLOX-N | 26.1 | 3.4M | Inference Model/Training Model |
| FasterRCNN-ResNet34-FPN | 37.8 | 137.5 M | Inference Model/Training Model |
| YOLOv3-DarkNet53 | 39.1 | 219.7 M | Inference ModelInference Model/Training Model |
| Cascade-FasterRCNN-ResNet50-FPN | 41.1 | 245.4 M | Inference Model/Training Model |
| Model Name | mAP(%) | Model Size | Model Download Link |
|---|---|---|---|
| PP-YOLOE_plus_SOD-S | 25.1 | 77.3 M | Inference Model/Training Model |
| PP-YOLOE_plus_SOD-L | 31.9 | 325.0 M | Inference Model/Training Model |
| PP-YOLOE_plus_SOD-largesize-L | 42.7 | 340.5 M | Inference Model/Training Model |
| Model Name | mIoU (%) | Model Storage Size (M) | Model Download Link |
|---|---|---|---|
| Deeplabv3_Plus-R50 | 80.36 | 94.9 M | Inference Model/Training Model |
| Deeplabv3_Plus-R101 | 81.10 | 162.5 M | Inference Model/Training Model |
| PP-LiteSeg-T | 73.10 | 28.5 M | Inference Model/Training Model |
| Model Name | Avg(%) | Model Size | Model Download Link |
|---|---|---|---|
| STFPM | 96.2 | 21.5 M | Inference Model/Training Model |
| Model Name | AP (%) Easy/Medium/Hard |
Model Size | Model Download Link |
|---|---|---|---|
| PicoDet_LCNet_x2_5_face | 93.7/90.7/68.1 | 28.9 M | Inference Model/Training Model |
| Model Name | Detection Hmean (%) | Model Size (M) | Model Download Link |
|---|---|---|---|
| PP-OCRv4_mobile_det | 77.79 | 4.2 M | Inference Model/Training Model |
| PP-OCRv4_server_det | 82.69 | 100.1M | Inference Model/Training Model |
| Model Name | Recognition Avg Accuracy (%) | Model Size (M) | Model Download Link |
|---|---|---|---|
| PP-OCRv4_mobile_rec | 78.20 | 10.6 M | Inference Model/Training Model |
| PP-OCRv4_server_rec | 79.20 | 71.2 M | Inference Model/Training Model |
| Model Name | mse | mae | Model Size (M) | Model Download Link |
|---|---|---|---|---|
| DLinear | 0.382 | 0.394 | 72K | Inference Model/Training Model |
| NLinear | 0.386 | 0.392 | 40K | Inference Model/Training Model |
| RLinear | 0.384 | 0.392 | 40K | Inference Model/Training Model |