pipeline.py 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463
  1. # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from typing import Any, Dict, List, Optional, Union
  15. import numpy as np
  16. from ....utils import logging
  17. from ....utils.deps import pipeline_requires_extra
  18. from ...common.batch_sampler import ImageBatchSampler
  19. from ...common.reader import ReadImage
  20. from ...utils.hpi import HPIConfig
  21. from ...utils.pp_option import PaddlePredictorOption
  22. from .._parallel import AutoParallelImageSimpleInferencePipeline
  23. from ..base import BasePipeline
  24. from ..components import (
  25. CropByPolys,
  26. SortPolyBoxes,
  27. SortQuadBoxes,
  28. convert_points_to_boxes,
  29. rotate_image,
  30. )
  31. from .result import OCRResult
  32. class _OCRPipeline(BasePipeline):
  33. """OCR Pipeline"""
  34. def __init__(
  35. self,
  36. config: Dict,
  37. device: Optional[str] = None,
  38. pp_option: Optional[PaddlePredictorOption] = None,
  39. use_hpip: bool = False,
  40. hpi_config: Optional[Union[Dict[str, Any], HPIConfig]] = None,
  41. ) -> None:
  42. """
  43. Initializes the class with given configurations and options.
  44. Args:
  45. config (Dict): Configuration dictionary containing various settings.
  46. device (str, optional): Device to run the predictions on. Defaults to None.
  47. pp_option (PaddlePredictorOption, optional): PaddlePredictor options. Defaults to None.
  48. use_hpip (bool, optional): Whether to use the high-performance
  49. inference plugin (HPIP) by default. Defaults to False.
  50. hpi_config (Optional[Union[Dict[str, Any], HPIConfig]], optional):
  51. The default high-performance inference configuration dictionary.
  52. Defaults to None.
  53. """
  54. super().__init__(
  55. device=device, pp_option=pp_option, use_hpip=use_hpip, hpi_config=hpi_config
  56. )
  57. self.use_doc_preprocessor = config.get("use_doc_preprocessor", True)
  58. if self.use_doc_preprocessor:
  59. doc_preprocessor_config = config.get("SubPipelines", {}).get(
  60. "DocPreprocessor",
  61. {
  62. "pipeline_config_error": "config error for doc_preprocessor_pipeline!"
  63. },
  64. )
  65. self.doc_preprocessor_pipeline = self.create_pipeline(
  66. doc_preprocessor_config
  67. )
  68. self.use_textline_orientation = config.get("use_textline_orientation", True)
  69. if self.use_textline_orientation:
  70. textline_orientation_config = config.get("SubModules", {}).get(
  71. "TextLineOrientation",
  72. {"model_config_error": "config error for textline_orientation_model!"},
  73. )
  74. self.textline_orientation_model = self.create_model(
  75. textline_orientation_config
  76. )
  77. text_det_config = config.get("SubModules", {}).get(
  78. "TextDetection", {"model_config_error": "config error for text_det_model!"}
  79. )
  80. self.text_type = config["text_type"]
  81. if self.text_type == "general":
  82. self.text_det_limit_side_len = text_det_config.get("limit_side_len", 960)
  83. self.text_det_limit_type = text_det_config.get("limit_type", "max")
  84. self.text_det_max_side_limit = text_det_config.get("max_side_limit", 4000)
  85. self.text_det_thresh = text_det_config.get("thresh", 0.3)
  86. self.text_det_box_thresh = text_det_config.get("box_thresh", 0.6)
  87. self.input_shape = text_det_config.get("input_shape", None)
  88. self.text_det_unclip_ratio = text_det_config.get("unclip_ratio", 2.0)
  89. self._sort_boxes = SortQuadBoxes()
  90. self._crop_by_polys = CropByPolys(det_box_type="quad")
  91. elif self.text_type == "seal":
  92. self.text_det_limit_side_len = text_det_config.get("limit_side_len", 736)
  93. self.text_det_limit_type = text_det_config.get("limit_type", "min")
  94. self.text_det_max_side_limit = text_det_config.get("max_side_limit", 4000)
  95. self.text_det_thresh = text_det_config.get("thresh", 0.2)
  96. self.text_det_box_thresh = text_det_config.get("box_thresh", 0.6)
  97. self.text_det_unclip_ratio = text_det_config.get("unclip_ratio", 0.5)
  98. self.input_shape = text_det_config.get("input_shape", None)
  99. self._sort_boxes = SortPolyBoxes()
  100. self._crop_by_polys = CropByPolys(det_box_type="poly")
  101. else:
  102. raise ValueError("Unsupported text type {}".format(self.text_type))
  103. self.text_det_model = self.create_model(
  104. text_det_config,
  105. limit_side_len=self.text_det_limit_side_len,
  106. limit_type=self.text_det_limit_type,
  107. max_side_limit=self.text_det_max_side_limit,
  108. thresh=self.text_det_thresh,
  109. box_thresh=self.text_det_box_thresh,
  110. unclip_ratio=self.text_det_unclip_ratio,
  111. input_shape=self.input_shape,
  112. )
  113. text_rec_config = config.get("SubModules", {}).get(
  114. "TextRecognition",
  115. {"model_config_error": "config error for text_rec_model!"},
  116. )
  117. self.text_rec_score_thresh = text_rec_config.get("score_thresh", 0)
  118. self.input_shape = text_rec_config.get("input_shape", None)
  119. self.text_rec_model = self.create_model(
  120. text_rec_config, input_shape=self.input_shape
  121. )
  122. self.batch_sampler = ImageBatchSampler(batch_size=config.get("batch_size", 1))
  123. self.img_reader = ReadImage(format="BGR")
  124. def rotate_image(
  125. self, image_array_list: List[np.ndarray], rotate_angle_list: List[int]
  126. ) -> List[np.ndarray]:
  127. """
  128. Rotate the given image arrays by their corresponding angles.
  129. 0 corresponds to 0 degrees, 1 corresponds to 180 degrees.
  130. Args:
  131. image_array_list (List[np.ndarray]): A list of input image arrays to be rotated.
  132. rotate_angle_list (List[int]): A list of rotation indicators (0 or 1).
  133. 0 means rotate by 0 degrees
  134. 1 means rotate by 180 degrees
  135. Returns:
  136. List[np.ndarray]: A list of rotated image arrays.
  137. Raises:
  138. AssertionError: If any rotate_angle is not 0 or 1.
  139. AssertionError: If the lengths of input lists don't match.
  140. """
  141. assert len(image_array_list) == len(
  142. rotate_angle_list
  143. ), f"Length of image_array_list ({len(image_array_list)}) must match length of rotate_angle_list ({len(rotate_angle_list)})"
  144. for angle in rotate_angle_list:
  145. assert angle in [0, 1], f"rotate_angle must be 0 or 1, now it's {angle}"
  146. rotated_images = []
  147. for image_array, rotate_indicator in zip(image_array_list, rotate_angle_list):
  148. # Convert 0/1 indicator to actual rotation angle
  149. rotate_angle = rotate_indicator * 180
  150. rotated_image = rotate_image(image_array, rotate_angle)
  151. rotated_images.append(rotated_image)
  152. return rotated_images
  153. def check_model_settings_valid(self, model_settings: Dict) -> bool:
  154. """
  155. Check if the input parameters are valid based on the initialized models.
  156. Args:
  157. model_info_params(Dict): A dictionary containing input parameters.
  158. Returns:
  159. bool: True if all required models are initialized according to input parameters, False otherwise.
  160. """
  161. if model_settings["use_doc_preprocessor"] and not self.use_doc_preprocessor:
  162. logging.error(
  163. "Set use_doc_preprocessor, but the models for doc preprocessor are not initialized."
  164. )
  165. return False
  166. if (
  167. model_settings["use_textline_orientation"]
  168. and not self.use_textline_orientation
  169. ):
  170. logging.error(
  171. "Set use_textline_orientation, but the models for use_textline_orientation are not initialized."
  172. )
  173. return False
  174. return True
  175. def get_model_settings(
  176. self,
  177. use_doc_orientation_classify: Optional[bool],
  178. use_doc_unwarping: Optional[bool],
  179. use_textline_orientation: Optional[bool],
  180. ) -> dict:
  181. """
  182. Get the model settings based on the provided parameters or default values.
  183. Args:
  184. use_doc_orientation_classify (Optional[bool]): Whether to use document orientation classification.
  185. use_doc_unwarping (Optional[bool]): Whether to use document unwarping.
  186. use_textline_orientation (Optional[bool]): Whether to use textline orientation.
  187. Returns:
  188. dict: A dictionary containing the model settings.
  189. """
  190. if use_doc_orientation_classify is None and use_doc_unwarping is None:
  191. use_doc_preprocessor = self.use_doc_preprocessor
  192. else:
  193. if use_doc_orientation_classify is True or use_doc_unwarping is True:
  194. use_doc_preprocessor = True
  195. else:
  196. use_doc_preprocessor = False
  197. if use_textline_orientation is None:
  198. use_textline_orientation = self.use_textline_orientation
  199. return dict(
  200. use_doc_preprocessor=use_doc_preprocessor,
  201. use_textline_orientation=use_textline_orientation,
  202. )
  203. def get_text_det_params(
  204. self,
  205. text_det_limit_side_len: Optional[int] = None,
  206. text_det_limit_type: Optional[str] = None,
  207. text_det_max_side_limit: Optional[int] = None,
  208. text_det_thresh: Optional[float] = None,
  209. text_det_box_thresh: Optional[float] = None,
  210. text_det_unclip_ratio: Optional[float] = None,
  211. ) -> dict:
  212. """
  213. Get text detection parameters.
  214. If a parameter is None, its default value from the instance will be used.
  215. Args:
  216. text_det_limit_side_len (Optional[int]): The maximum side length of the text box.
  217. text_det_limit_type (Optional[str]): The type of limit to apply to the text box.
  218. text_det_max_side_limit (Optional[int]): The maximum side length of the text box.
  219. text_det_thresh (Optional[float]): The threshold for text detection.
  220. text_det_box_thresh (Optional[float]): The threshold for the bounding box.
  221. text_det_unclip_ratio (Optional[float]): The ratio for unclipping the text box.
  222. Returns:
  223. dict: A dictionary containing the text detection parameters.
  224. """
  225. if text_det_limit_side_len is None:
  226. text_det_limit_side_len = self.text_det_limit_side_len
  227. if text_det_limit_type is None:
  228. text_det_limit_type = self.text_det_limit_type
  229. if text_det_max_side_limit is None:
  230. text_det_max_side_limit = self.text_det_max_side_limit
  231. if text_det_thresh is None:
  232. text_det_thresh = self.text_det_thresh
  233. if text_det_box_thresh is None:
  234. text_det_box_thresh = self.text_det_box_thresh
  235. if text_det_unclip_ratio is None:
  236. text_det_unclip_ratio = self.text_det_unclip_ratio
  237. return dict(
  238. limit_side_len=text_det_limit_side_len,
  239. limit_type=text_det_limit_type,
  240. thresh=text_det_thresh,
  241. max_side_limit=text_det_max_side_limit,
  242. box_thresh=text_det_box_thresh,
  243. unclip_ratio=text_det_unclip_ratio,
  244. )
  245. def predict(
  246. self,
  247. input: Union[str, List[str], np.ndarray, List[np.ndarray]],
  248. use_doc_orientation_classify: Optional[bool] = None,
  249. use_doc_unwarping: Optional[bool] = None,
  250. use_textline_orientation: Optional[bool] = None,
  251. text_det_limit_side_len: Optional[int] = None,
  252. text_det_limit_type: Optional[str] = None,
  253. text_det_max_side_limit: Optional[int] = None,
  254. text_det_thresh: Optional[float] = None,
  255. text_det_box_thresh: Optional[float] = None,
  256. text_det_unclip_ratio: Optional[float] = None,
  257. text_rec_score_thresh: Optional[float] = None,
  258. ) -> OCRResult:
  259. """
  260. Predict OCR results based on input images or arrays with optional preprocessing steps.
  261. Args:
  262. input (Union[str, list[str], np.ndarray, list[np.ndarray]]): Input image of pdf path(s) or numpy array(s).
  263. use_doc_orientation_classify (Optional[bool]): Whether to use document orientation classification.
  264. use_doc_unwarping (Optional[bool]): Whether to use document unwarping.
  265. use_textline_orientation (Optional[bool]): Whether to use textline orientation prediction.
  266. text_det_limit_side_len (Optional[int]): Maximum side length for text detection.
  267. text_det_limit_type (Optional[str]): Type of limit to apply for text detection.
  268. text_det_max_side_limit (Optional[int]): Maximum side length for text detection.
  269. text_det_thresh (Optional[float]): Threshold for text detection.
  270. text_det_box_thresh (Optional[float]): Threshold for text detection boxes.
  271. text_det_unclip_ratio (Optional[float]): Ratio for unclipping text detection boxes.
  272. text_rec_score_thresh (Optional[float]): Score threshold for text recognition.
  273. Returns:
  274. OCRResult: Generator yielding OCR results for each input image.
  275. """
  276. model_settings = self.get_model_settings(
  277. use_doc_orientation_classify, use_doc_unwarping, use_textline_orientation
  278. )
  279. if not self.check_model_settings_valid(model_settings):
  280. yield {"error": "the input params for model settings are invalid!"}
  281. text_det_params = self.get_text_det_params(
  282. text_det_limit_side_len,
  283. text_det_limit_type,
  284. text_det_max_side_limit,
  285. text_det_thresh,
  286. text_det_box_thresh,
  287. text_det_unclip_ratio,
  288. )
  289. if text_rec_score_thresh is None:
  290. text_rec_score_thresh = self.text_rec_score_thresh
  291. for _, batch_data in enumerate(self.batch_sampler(input)):
  292. image_arrays = self.img_reader(batch_data.instances)
  293. if model_settings["use_doc_preprocessor"]:
  294. doc_preprocessor_results = list(
  295. self.doc_preprocessor_pipeline(
  296. image_arrays,
  297. use_doc_orientation_classify=use_doc_orientation_classify,
  298. use_doc_unwarping=use_doc_unwarping,
  299. )
  300. )
  301. else:
  302. doc_preprocessor_results = [{"output_img": arr} for arr in image_arrays]
  303. doc_preprocessor_images = [
  304. item["output_img"] for item in doc_preprocessor_results
  305. ]
  306. det_results = list(
  307. self.text_det_model(doc_preprocessor_images, **text_det_params)
  308. )
  309. dt_polys_list = [item["dt_polys"] for item in det_results]
  310. dt_polys_list = [self._sort_boxes(item) for item in dt_polys_list]
  311. results = [
  312. {
  313. "input_path": input_path,
  314. "page_index": page_index,
  315. "doc_preprocessor_res": doc_preprocessor_res,
  316. "dt_polys": dt_polys,
  317. "model_settings": model_settings,
  318. "text_det_params": text_det_params,
  319. "text_type": self.text_type,
  320. "text_rec_score_thresh": text_rec_score_thresh,
  321. "rec_texts": [],
  322. "rec_scores": [],
  323. "rec_polys": [],
  324. }
  325. for input_path, page_index, doc_preprocessor_res, dt_polys in zip(
  326. batch_data.input_paths,
  327. batch_data.page_indexes,
  328. doc_preprocessor_results,
  329. dt_polys_list,
  330. )
  331. ]
  332. indices = list(range(len(doc_preprocessor_images)))
  333. indices = [idx for idx in indices if len(dt_polys_list[idx]) > 0]
  334. if indices:
  335. all_subs_of_imgs = []
  336. chunk_indices = [0]
  337. for idx in indices:
  338. all_subs_of_img = list(
  339. self._crop_by_polys(
  340. doc_preprocessor_images[idx], dt_polys_list[idx]
  341. )
  342. )
  343. all_subs_of_imgs.extend(all_subs_of_img)
  344. chunk_indices.append(chunk_indices[-1] + len(all_subs_of_img))
  345. # use textline orientation model
  346. if model_settings["use_textline_orientation"]:
  347. angles = [
  348. int(textline_angle_info["class_ids"][0])
  349. for textline_angle_info in self.textline_orientation_model(
  350. all_subs_of_imgs
  351. )
  352. ]
  353. all_subs_of_imgs = self.rotate_image(all_subs_of_imgs, angles)
  354. else:
  355. angles = [-1] * len(all_subs_of_imgs)
  356. for i, idx in enumerate(indices):
  357. res = results[idx]
  358. res["textline_orientation_angles"] = angles[
  359. chunk_indices[i] : chunk_indices[i + 1]
  360. ]
  361. # TODO: Process all sub-images in the batch together
  362. for i, idx in enumerate(indices):
  363. all_subs_of_img = all_subs_of_imgs[
  364. chunk_indices[i] : chunk_indices[i + 1]
  365. ]
  366. res = results[idx]
  367. dt_polys = dt_polys_list[idx]
  368. sub_img_info_list = [
  369. {
  370. "sub_img_id": img_id,
  371. "sub_img_ratio": sub_img.shape[1] / float(sub_img.shape[0]),
  372. }
  373. for img_id, sub_img in enumerate(all_subs_of_img)
  374. ]
  375. sorted_subs_info = sorted(
  376. sub_img_info_list, key=lambda x: x["sub_img_ratio"]
  377. )
  378. sorted_subs_of_img = [
  379. all_subs_of_img[x["sub_img_id"]] for x in sorted_subs_info
  380. ]
  381. for i, rec_res in enumerate(
  382. self.text_rec_model(sorted_subs_of_img)
  383. ):
  384. sub_img_id = sorted_subs_info[i]["sub_img_id"]
  385. sub_img_info_list[sub_img_id]["rec_res"] = rec_res
  386. for sno in range(len(sub_img_info_list)):
  387. rec_res = sub_img_info_list[sno]["rec_res"]
  388. if rec_res["rec_score"] >= text_rec_score_thresh:
  389. res["rec_texts"].append(rec_res["rec_text"])
  390. res["rec_scores"].append(rec_res["rec_score"])
  391. res["rec_polys"].append(dt_polys[sno])
  392. for res in results:
  393. if self.text_type == "general":
  394. rec_boxes = convert_points_to_boxes(res["rec_polys"])
  395. res["rec_boxes"] = rec_boxes
  396. else:
  397. res["rec_boxes"] = np.array([])
  398. yield OCRResult(res)
  399. @pipeline_requires_extra("ocr")
  400. class OCRPipeline(AutoParallelImageSimpleInferencePipeline):
  401. entities = "OCR"
  402. @property
  403. def _pipeline_cls(self):
  404. return _OCRPipeline
  405. def _get_batch_size(self, config):
  406. return config.get("batch_size", 1)