PP-LCNetV2_small.yaml 3.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145
  1. # global configs
  2. Global:
  3. checkpoints: null
  4. pretrained_model: null
  5. output_dir: ./output/
  6. device: gpu
  7. save_interval: 1
  8. eval_during_train: True
  9. eval_interval: 1
  10. epochs: 480
  11. print_batch_step: 10
  12. use_visualdl: False
  13. # used for static mode and model export
  14. image_shape: [3, 224, 224]
  15. save_inference_dir: ./inference
  16. # mixed precision
  17. AMP:
  18. use_amp: False
  19. use_fp16_test: False
  20. scale_loss: 128.0
  21. use_dynamic_loss_scaling: True
  22. use_promote: False
  23. # O1: mixed fp16, O2: pure fp16
  24. level: O1
  25. # model architecture
  26. Arch:
  27. name: PPLCNetV2_small
  28. class_num: 102
  29. # loss function config for traing/eval process
  30. Loss:
  31. Train:
  32. - CELoss:
  33. weight: 1.0
  34. epsilon: 0.1
  35. Eval:
  36. - CELoss:
  37. weight: 1.0
  38. Optimizer:
  39. name: Momentum
  40. momentum: 0.9
  41. lr:
  42. name: Cosine
  43. learning_rate: 0.8
  44. warmup_epoch: 5
  45. regularizer:
  46. name: 'L2'
  47. coeff: 0.00002
  48. # data loader for train and eval
  49. DataLoader:
  50. Train:
  51. dataset:
  52. name: MultiScaleDataset
  53. image_root: ./dataset/ILSVRC2012/
  54. cls_label_path: ./dataset/ILSVRC2012/train_list.txt
  55. transform_ops:
  56. - DecodeImage:
  57. to_rgb: True
  58. channel_first: False
  59. - RandCropImage:
  60. size: 224
  61. - RandFlipImage:
  62. flip_code: 1
  63. - NormalizeImage:
  64. scale: 1.0/255.0
  65. mean: [0.485, 0.456, 0.406]
  66. std: [0.229, 0.224, 0.225]
  67. order: ''
  68. # support to specify width and height respectively:
  69. # scales: [(160,160), (192,192), (224,224) (288,288) (320,320)]
  70. sampler:
  71. name: MultiScaleSampler
  72. scales: [160, 192, 224, 288, 320]
  73. # first_bs: batch size for the first image resolution in the scales list
  74. # divide_factor: to ensure the width and height dimensions can be devided by downsampling multiple
  75. first_bs: 500
  76. divided_factor: 32
  77. is_training: True
  78. loader:
  79. num_workers: 4
  80. use_shared_memory: True
  81. Eval:
  82. dataset:
  83. name: ImageNetDataset
  84. image_root: ./dataset/ILSVRC2012/
  85. cls_label_path: ./dataset/ILSVRC2012/val_list.txt
  86. transform_ops:
  87. - DecodeImage:
  88. to_rgb: True
  89. channel_first: False
  90. - ResizeImage:
  91. resize_short: 256
  92. - CropImage:
  93. size: 224
  94. - NormalizeImage:
  95. scale: 1.0/255.0
  96. mean: [0.485, 0.456, 0.406]
  97. std: [0.229, 0.224, 0.225]
  98. order: ''
  99. sampler:
  100. name: DistributedBatchSampler
  101. batch_size: 64
  102. drop_last: False
  103. shuffle: False
  104. loader:
  105. num_workers: 4
  106. use_shared_memory: True
  107. Infer:
  108. infer_imgs: docs/images/inference_deployment/whl_demo.jpg
  109. batch_size: 10
  110. transforms:
  111. - DecodeImage:
  112. to_rgb: True
  113. channel_first: False
  114. - ResizeImage:
  115. resize_short: 256
  116. - CropImage:
  117. size: 224
  118. - NormalizeImage:
  119. scale: 1.0/255.0
  120. mean: [0.485, 0.456, 0.406]
  121. std: [0.229, 0.224, 0.225]
  122. order: ''
  123. - ToCHWImage:
  124. PostProcess:
  125. name: Topk
  126. topk: 5
  127. class_id_map_file: ppcls/utils/imagenet1k_label_list.txt
  128. Metric:
  129. Train:
  130. - TopkAcc:
  131. topk: [1, 5]
  132. Eval:
  133. - TopkAcc:
  134. topk: [1, 5]