| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import functools
- from types import GeneratorType
- import time
- import numpy as np
- from prettytable import PrettyTable
- from ...utils.flags import INFER_BENCHMARK_OUTPUT
- from ...utils import logging
- class Benchmark:
- def __init__(self, components):
- self._components = components
- self._e2e_tic = None
- self._e2e_elapse = None
- def reset(self):
- for name in self._components:
- cmp = self._components[name]
- cmp.timer.reset()
- self._e2e_tic = time.time()
- def gather(self, e2e_num):
- # lazy import for avoiding circular import
- from ..components.paddle_predictor import BasePaddlePredictor
- detail = []
- summary = {"preprocess": 0, "inference": 0, "postprocess": 0}
- op_tag = "preprocess"
- for name in self._components:
- cmp = self._components[name]
- times = cmp.timer.logs
- counts = len(times)
- avg = np.mean(times)
- total = np.sum(times)
- detail.append((name, counts, avg))
- if isinstance(cmp, BasePaddlePredictor):
- summary["inference"] += total
- op_tag = "postprocess"
- else:
- summary[op_tag] += total
- summary = [
- ("PreProcess", e2e_num, summary["preprocess"] / e2e_num),
- ("Inference", e2e_num, summary["inference"] / e2e_num),
- ("PostProcess", e2e_num, summary["postprocess"] / e2e_num),
- ("End2End", e2e_num, self._e2e_elapse / e2e_num),
- ]
- return detail, summary
- def collect(self, e2e_num):
- self._e2e_elapse = time.time() - self._e2e_tic
- detail, summary = self.gather(e2e_num)
- table = PrettyTable(["Component", "Call Counts", "Avg Time Per Call (ms)"])
- table.add_rows(
- [(name, cnts, f"{avg * 1000:.8f}") for name, cnts, avg in detail]
- )
- logging.info(table)
- table = PrettyTable(["Stage", "Num of Instances", "Avg Time Per Instance (ms)"])
- table.add_rows(
- [(name, cnts, f"{avg * 1000:.8f}") for name, cnts, avg in summary]
- )
- logging.info(table)
- if INFER_BENCHMARK_OUTPUT:
- str_ = "Component, Call Counts, Avg Time Per Call (ms)\n"
- str_ += "\n".join(
- [f"{name}, {cnts}, {avg * 1000:.18f}" for name, cnts, avg in detail]
- )
- str_ += "\n" + "*" * 100 + "\n"
- str_ += "Stage, Num of Instances, Avg Time Per Instance (ms)\n"
- str_ += "\n".join(
- [f"{name}, {cnts}, {avg * 1000:.18f}" for name, cnts, avg in summary]
- )
- with open(INFER_BENCHMARK_OUTPUT, "w") as f:
- f.write(str_)
- class Timer:
- def __init__(self):
- self._tic = None
- self._elapses = []
- def watch_func(self, func):
- @functools.wraps(func)
- def wrapper(*args, **kwargs):
- tic = time.time()
- output = func(*args, **kwargs)
- if isinstance(output, GeneratorType):
- return self.watch_generator(output)
- else:
- self._update(time.time() - tic)
- return output
- return wrapper
- def watch_generator(self, generator):
- @functools.wraps(generator)
- def wrapper():
- while 1:
- try:
- tic = time.time()
- item = next(generator)
- self._update(time.time() - tic)
- yield item
- except StopIteration:
- break
- return wrapper()
- def reset(self):
- self._tic = None
- self._elapses = []
- def _update(self, elapse):
- self._elapses.append(elapse)
- @property
- def logs(self):
- return self._elapses
|