train_detection.py 1.9 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950
  1. import os
  2. # 选择使用0号卡
  3. os.environ['CUDA_VISIBLE_DEVICES'] = '0'
  4. from paddlex.det import transforms
  5. import paddlex as pdx
  6. # 下载和解压表计检测数据集
  7. meter_det_dataset = 'https://bj.bcebos.com/paddlex/meterreader/datasets/meter_det.tar.gz'
  8. pdx.utils.download_and_decompress(meter_det_dataset, path='./')
  9. # 定义训练和验证时的transforms
  10. # API说明: https://paddlex.readthedocs.io/zh_CN/latest/apis/transforms/det_transforms.html#composedyolotransforms
  11. train_transforms = transforms.ComposedYOLOv3Transforms(
  12. mode='train', shape=[608, 608])
  13. eval_transforms = transforms.ComposedYOLOv3Transforms(
  14. mode='eval', shape=[608, 608])
  15. # 定义训练和验证所用的数据集
  16. # API说明: https://paddlex.readthedocs.io/zh_CN/latest/apis/datasets/detection.html#vocdetection
  17. train_dataset = pdx.datasets.CocoDetection(
  18. data_dir='meter_det/train/',
  19. ann_file='meter_det/annotations/instance_train.json',
  20. transforms=train_transforms,
  21. shuffle=True)
  22. eval_dataset = pdx.datasets.CocoDetection(
  23. data_dir='meter_det/test/',
  24. ann_file='meter_det/annotations/instance_test.json',
  25. transforms=eval_transforms)
  26. # 初始化模型,并进行训练
  27. # 可使用VisualDL查看训练指标
  28. # VisualDL启动方式: visualdl --logdir output/yolov3_darknet/vdl_log --port 8001
  29. # 浏览器打开 https://0.0.0.0:8001即可
  30. # 其中0.0.0.0为本机访问,如为远程服务, 改成相应机器IP
  31. # API说明: https://paddlex.readthedocs.io/zh_CN/latest/apis/models/detection.html#yolov3
  32. num_classes = len(train_dataset.labels)
  33. model = pdx.det.YOLOv3(
  34. num_classes=num_classes, backbone='DarkNet53', label_smooth=True)
  35. model.train(
  36. num_epochs=270,
  37. train_dataset=train_dataset,
  38. train_batch_size=8,
  39. eval_dataset=eval_dataset,
  40. learning_rate=0.001,
  41. warmup_steps=4000,
  42. lr_decay_epochs=[210, 240],
  43. save_dir='output/meter_det',
  44. use_vdl=True)