| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283 |
- import os
- from six import text_type as _text_type
- import argparse
- import sys
- from utils import logging
- import paddlex as pdx
- def arg_parser():
- parser = argparse.ArgumentParser()
- parser.add_argument(
- "--model_dir",
- "-m",
- type=_text_type,
- default=None,
- help="define model directory path")
- parser.add_argument(
- "--save_dir",
- "-s",
- type=_text_type,
- default=None,
- help="path to save inference model")
- parser.add_argument(
- "--fixed_input_shape",
- "-fs",
- default=None,
- help="export openvino model with input shape:[w,h]")
- parser.add_argument(
- "--data_type",
- "-dp",
- default="FP32",
- help="FP32 or FP16, the data_type of openvino IR")
- return parser
-
- def export_openvino_model(model, args):
- if model.model_type == "detector" or model.__class__.__name__ == "FastSCNN":
- logging.error(
- "Only image classifier models and semantic segmentation models(except FastSCNN) are supported to export to openvino")
- try:
- import x2paddle
- if x2paddle.__version__ < '0.7.4':
- logging.error("You need to upgrade x2paddle >= 0.7.4")
- except:
- logging.error(
- "You need to install x2paddle first, pip install x2paddle>=0.7.4")
-
- import x2paddle.convert as x2pc
- x2pc.paddle2onnx(args.model_dir, args.save_dir)
- import mo.main as mo
- from mo.utils.cli_parser import get_onnx_cli_parser
- onnx_parser = get_onnx_cli_parser()
- onnx_parser.add_argument("--model_dir",type=_text_type)
- onnx_parser.add_argument("--save_dir",type=_text_type)
- onnx_parser.add_argument("--fixed_input_shape")
- onnx_input = os.path.join(args.save_dir, 'x2paddle_model.onnx')
- onnx_parser.set_defaults(input_model=onnx_input)
- onnx_parser.set_defaults(output_dir=args.save_dir)
- shape = '[1,3,'
- shape = shape + args.fixed_input_shape[1:]
- onnx_parser.set_defaults(input_shape = shape)
- mo.main(onnx_parser,'onnx')
- def main():
- parser = arg_parser()
- args = parser.parse_args()
- assert args.model_dir is not None, "--model_dir should be defined while exporting openvino model"
- assert args.save_dir is not None, "--save_dir should be defined to create openvino model"
- model = pdx.load_model(args.model_dir)
- if model.status == "Normal" or model.status == "Prune":
- logging.error(
- "Only support inference model, try to export model first as below,",
- exit=False)
- export_openvino_model(model, args)
- if __name__ == "__main__":
- main()
|