| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from typing import Any, Dict, Optional, Union, Tuple
- import numpy as np
- from ...utils.pp_option import PaddlePredictorOption
- from ..base import BasePipeline
- # [TODO] 待更新models_new到models
- from ...models_new.open_vocabulary_segmentation.results import SAMSegResult
- Number = Union[int, float]
- class OpenVocabularySegmentationPipeline(BasePipeline):
- """Open Vocabulary Segmentation pipeline"""
- entities = "open_vocabulary_segmentation"
- def __init__(
- self,
- config: Dict,
- device: str = None,
- pp_option: PaddlePredictorOption = None,
- use_hpip: bool = False,
- ) -> None:
- """
- Initializes the class with given configurations and options.
- Args:
- config (Dict): Configuration dictionary containing model and other parameters.
- device (str): The device to run the prediction on. Default is None.
- pp_option (PaddlePredictorOption): Options for PaddlePaddle predictor. Default is None.
- use_hpip (bool): Whether to use high-performance inference (hpip) for prediction. Defaults to False.
- """
- super().__init__(device=device, pp_option=pp_option, use_hpip=use_hpip)
- # create box-prompted SAM-H
- box_prompted_model_cfg = config.get("SubModules", {}).get(
- "BoxPromptSegmentation",
- {"model_config_error": "config error for doc_ori_classify_model!"},
- )
- self.box_prompted_model = self.create_model(box_prompted_model_cfg)
- # create point-prompted SAM-H
- point_prompted_model_cfg = config.get("SubModules", {}).get(
- "PointPromptSegmentation",
- {"model_config_error": "config error for doc_ori_classify_model!"},
- )
- self.point_prompted_model = self.create_model(point_prompted_model_cfg)
- def predict(
- self,
- input: str | list[str] | np.ndarray | list[np.ndarray],
- prompt: list[list[float]] | np.ndarray,
- prompt_type: str = "box",
- **kwargs
- ) -> SAMSegResult:
- """Predicts image segmentation results for the given input.
- Args:
- input (str | list[str] | np.ndarray | list[np.ndarray]): The input image(s) or path(s) to the images.
- prompt (list[list[int]] | np.ndarray): The prompt for the input image(s).
- prompt_type (str): The type of prompt, either 'box' or 'point'. Default is 'box'.
- **kwargs: Additional keyword arguments that can be passed to the function.
- Returns:
- SAMSegResult: The predicted SAM segmentation results.
- """
- if prompt_type == "box":
- yield from self.box_prompted_model(input, prompts={"box_prompt": prompt})
- elif prompt_type == "point":
- yield from self.point_prompted_model(
- input, prompts={"point_prompt": prompt}
- )
- else:
- raise ValueError(
- "Invalid prompt type. Only 'box' and 'point' are supported"
- )
|