| 123456789101112131415161718192021222324252627282930 |
- from paddlex import create_pipeline
- import time
- from pathlib import Path
- # input_path = "./sample_data/300674-母公司现金流量表-扫描.png"
- input_path = "/Users/zhch158/workspace/data/流水分析/对公_招商银行图/table_recognition_v2_Results/对公_招商银行图/对公_招商银行图_page_001.png"
- pipeline_path = "./my_config/table_recognition_v2.yaml"
- pipeline_name = Path(pipeline_path).stem
- output_path = Path(f"./sample_data/single_pipeline_output/{pipeline_name}/")
- pipeline = create_pipeline(pipeline=pipeline_path)
- # For Image
- output = pipeline.predict(
- input=input_path,
- device="gpu", # 或者 "gpu" 如果你有 GPU 支持
- use_doc_orientation_classify=True, # 开启文档方向分类
- use_doc_unwarping=False, # 开启文档去畸变
- # use_e2e_wireless_table_rec_model=True, # 开启端到端无线表格识别
- use_wireless_table_cells_trans_to_html=True, # 开启无线表格单元格转 HTML
- )
- # 可视化结果并保存 json 结果
- for res in output:
- res.print()
- # res.save_to_json(save_path="sample_data/output")
- # res.save_to_markdown(save_path="sample_data/output")
- output_path.mkdir(parents=True, exist_ok=True)
- res.save_all(save_path=output_path.as_posix()) # 保存所有结果到指定路径
|