PaddleX 中提供了多个产线,包括:OCR、图像分类、目标检测、实例分割、语义分割等,每个产线有多个模型可供选择,并均提供了官方预训练权重,支持通过 Python API、命令行方式直接推理预测。各产线使用方式可参考以下代码。
import cv2
from paddlex import OCRPipeline
from paddlex import PaddleInferenceOption
from paddle.pipelines.PPOCR.utils import draw_ocr_box_txt
pipeline = OCRPipeline(
'PP-OCRv4_mobile_det',
'PP-OCRv4_mobile_rec',
text_det_kernel_option=PaddleInferenceOption(),
text_rec_kernel_option=PaddleInferenceOption(),)
result = pipeline(
"/paddle/dataset/paddlex/ocr_det/ocr_det_dataset_examples/images/train_img_100.jpg",
)
draw_img = draw_ocr_box_txt(result['original_image'],result['dt_polys'], result["rec_text"])
cv2.imwrite("ocr_result.jpg", draw_img[:, :, ::-1], )
from paddlex import ClsPipeline
from paddlex import PaddleInferenceOption
models = [
"ResNet18",
"ResNet34",
"ResNet50",
"ResNet101",
"ResNet152",
"PP-LCNet_x0_25",
"PP-LCNet_x0_35",
"PP-LCNet_x0_5",
"PP-LCNet_x0_75",
"PP-LCNet_x1_0",
"PP-LCNet_x1_5",
"PP-LCNet_x2_5",
"PP-LCNet_x2_0",
"MobileNetV3_large_x0_35",
"MobileNetV3_large_x0_5",
"MobileNetV3_large_x0_75",
"MobileNetV3_large_x1_0",
"MobileNetV3_large_x1_25",
"MobileNetV3_small_x0_35",
"MobileNetV3_small_x0_5",
"MobileNetV3_small_x0_75",
"MobileNetV3_small_x1_0",
"MobileNetV3_small_x1_25",
"ConvNeXt_tiny",
"MobileNetV2_x0_25",
"MobileNetV2_x0_5",
"MobileNetV2_x1_0",
"MobileNetV2_x1_5",
"MobileNetV2_x2_0",
"SwinTransformer_base_patch4_window7_224",
"PP-HGNet_small",
"PP-HGNetV2-B0",
"PP-HGNetV2-B4",
"PP-HGNetV2-B6",
"CLIP_vit_base_patch16_224",
"CLIP_vit_large_patch14_224",
]
for model_name in models:
try:
pipeline = ClsPipeline(model_name, kernel_option=PaddleInferenceOption())
result = pipeline(
"/paddle/dataset/paddlex/cls/cls_flowers_examples/images/image_00006.jpg"
)
print(result["cls_result"])
except Exception as e:
print(f"[ERROR] model: {model_name}; err: {e}")
print(f"[INFO] model: {model_name} done!")
from pathlib import Path
from paddlex import DetPipeline
from paddlex import PaddleInferenceOption
models = [
"PicoDet-L",
"PicoDet-S",
"PP-YOLOE_plus-L",
"PP-YOLOE_plus-M",
"PP-YOLOE_plus-S",
"PP-YOLOE_plus-X",
"RT-DETR-H",
"RT-DETR-L",
"RT-DETR-R18",
"RT-DETR-R50",
"RT-DETR-X",
]
output_base = Path("output")
for model_name in models:
output_dir = output_base / model_name
try:
pipeline = DetPipeline(model_name, output_dir=output_dir, kernel_option=PaddleInferenceOption())
result = pipeline(
"/paddle/dataset/paddlex/det/det_coco_examples/images/road0.png")
print(result["boxes"])
except Exception as e:
print(f"[ERROR] model: {model_name}; err: {e}")
print(f"[INFO] model: {model_name} done!")
from pathlib import Path
from paddlex import InstanceSegPipeline
from paddlex import PaddleInferenceOption
models = ["Mask-RT-DETR-H", "Mask-RT-DETR-L"]
output_base = Path("output")
for model_name in models:
output_dir = output_base / model_name
try:
pipeline = InstanceSegPipeline(model_name, output_dir=output_dir, kernel_option=PaddleInferenceOption())
result = pipeline(
"/paddle/dataset/paddlex/instance_seg/instance_seg_coco_examples/images/aircraft-women-fashion-pilot-48797.png"
)
print(result["masks"])
except Exception as e:
print(f"[ERROR] model: {model_name}; err: {e}")
print(f"[INFO] model: {model_name} done!")
from pathlib import Path
from paddlex import SegPipeline
from paddlex import PaddleInferenceOption
models = [
"Deeplabv3-R50",
"Deeplabv3-R101",
"Deeplabv3_Plus-R50",
"Deeplabv3_Plus-R101",
"PP-LiteSeg-T",
"OCRNet_HRNet-W48",
]
output_base = Path("output")
for model_name in models:
output_dir = output_base / model_name
try:
pipeline = SegPipeline(model_name, output_dir=output_dir, kernel_option=PaddleInferenceOption())
result = pipeline(
"/paddle/dataset/paddlex/seg/seg_optic_examples/images/H0002.jpg"
)
print(result["seg_map"])
except Exception as e:
print(f"[ERROR] model: {model_name}; err: {e}")
print(f"[INFO] model: {model_name} done!")