base.py 1.9 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from abc import ABC, abstractmethod
  15. from typing import Any, Dict, Optional
  16. from ...utils.subclass_register import AutoRegisterABCMetaClass
  17. from ..models import create_predictor
  18. class BasePipeline(ABC, metaclass=AutoRegisterABCMetaClass):
  19. """Base Pipeline"""
  20. __is_base = True
  21. def __init__(self, device, predictor_kwargs={}) -> None:
  22. super().__init__()
  23. self._predictor_kwargs = predictor_kwargs
  24. self._device = device
  25. @abstractmethod
  26. def set_predictor():
  27. raise NotImplementedError(
  28. "The method `set_predictor` has not been implemented yet."
  29. )
  30. # alias the __call__() to predict()
  31. def __call__(self, *args, **kwargs):
  32. yield from self.predict(*args, **kwargs)
  33. def _create(self, model=None, pipeline=None, *args, **kwargs):
  34. if model:
  35. return create_predictor(
  36. *args,
  37. model=model,
  38. device=self._device,
  39. **kwargs,
  40. **self._predictor_kwargs
  41. )
  42. elif pipeline:
  43. return pipeline(
  44. *args,
  45. device=self._device,
  46. predictor_kwargs=self._predictor_kwargs,
  47. **kwargs
  48. )
  49. else:
  50. raise Exception()