| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from typing import Dict
- import re
- import json
- import erniebot
- from .....utils import logging
- from .base import BaseChat
- class ErnieBotChat(BaseChat):
- """Ernie Bot Chat"""
- entities = [
- "ernie-4.0",
- "ernie-3.5",
- "ernie-3.5-8k",
- "ernie-lite",
- "ernie-tiny-8k",
- "ernie-speed",
- "ernie-speed-128k",
- "ernie-char-8k",
- ]
- def __init__(self, config: Dict) -> None:
- """Initializes the ErnieBotChat with given configuration.
- Args:
- config (Dict): Configuration dictionary containing model_name, api_type, ak, sk, and access_token.
- Raises:
- ValueError: If model_name is not in the predefined entities,
- api_type is not one of ['aistudio', 'qianfan'],
- access_token is None for 'aistudio' api_type,
- or ak and sk are None for 'qianfan' api_type.
- """
- super().__init__()
- model_name = config.get("model_name", None)
- api_type = config.get("api_type", None)
- ak = config.get("ak", None)
- sk = config.get("sk", None)
- access_token = config.get("access_token", None)
- if model_name not in self.entities:
- raise ValueError(f"model_name must be in {self.entities} of ErnieBotChat.")
- if api_type not in ["aistudio", "qianfan"]:
- raise ValueError("api_type must be one of ['aistudio', 'qianfan']")
- if api_type == "aistudio" and access_token is None:
- raise ValueError("access_token cannot be empty when api_type is aistudio.")
- if api_type == "qianfan" and (ak is None or sk is None):
- raise ValueError("ak and sk cannot be empty when api_type is qianfan.")
- self.model_name = model_name
- self.config = config
- def generate_chat_results(
- self, prompt: str, temperature: float = 0.001, max_retries: int = 1
- ) -> Dict:
- """
- Generate chat results using the specified model and configuration.
- Args:
- prompt (str): The user's input prompt.
- temperature (float, optional): The temperature parameter for llms, defaults to 0.001.
- max_retries (int, optional): The maximum number of retries for llms API calls, defaults to 1.
- Returns:
- Dict: The chat completion result from the model.
- """
- try:
- cur_config = {
- "api_type": self.config["api_type"],
- "max_retries": max_retries,
- }
- if self.config["api_type"] == "aistudio":
- cur_config["access_token"] = self.config["access_token"]
- elif self.config["api_type"] == "qianfan":
- cur_config["ak"] = self.config["ak"]
- cur_config["sk"] = self.config["sk"]
- chat_completion = erniebot.ChatCompletion.create(
- _config_=cur_config,
- model=self.model_name,
- messages=[{"role": "user", "content": prompt}],
- temperature=float(temperature),
- )
- llm_result = chat_completion.get_result()
- return llm_result
- except Exception as e:
- if len(e.args) < 1:
- self.ERROR_MASSAGE = "暂无权限访问ErnieBot服务,请检查访问令牌。"
- elif (
- e.args[-1]
- == "暂无权限使用,请在 AI Studio 正确获取访问令牌(access token)使用"
- ):
- self.ERROR_MASSAGE = "暂无权限访问ErnieBot服务,请检查访问令牌。"
- else:
- logging.error(e)
- self.ERROR_MASSAGE = "大模型调用失败"
- return None
- def fix_llm_result_format(self, llm_result: str) -> dict:
- """
- Fix the format of the LLM result.
- Args:
- llm_result (str): The result from the LLM (Large Language Model).
- Returns:
- dict: A fixed format dictionary from the LLM result.
- """
- if not llm_result:
- return {}
- if "json" in llm_result or "```" in llm_result:
- llm_result = (
- llm_result.replace("```", "").replace("json", "").replace("/n", "")
- )
- llm_result = llm_result.replace("[", "").replace("]", "")
- try:
- llm_result = json.loads(llm_result)
- llm_result_final = {}
- for key in llm_result:
- value = llm_result[key]
- if isinstance(value, list):
- if len(value) > 0:
- llm_result_final[key] = value[0]
- else:
- llm_result_final[key] = value
- return llm_result_final
- except:
- results = (
- llm_result.replace("\n", "")
- .replace(" ", "")
- .replace("{", "")
- .replace("}", "")
- )
- if not results.endswith('"'):
- results = results + '"'
- pattern = r'"(.*?)": "([^"]*)"'
- matches = re.findall(pattern, str(results))
- if len(matches) > 0:
- llm_result = {k: v for k, v in matches}
- return llm_result
- else:
- return {}
|