| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os, sys
- from typing import Any, Dict, Optional
- import numpy as np
- import cv2
- from ..base import BasePipeline
- from ..components import CropByBoxes
- from ..layout_parsing.utils import convert_points_to_boxes
- from .utils import get_neighbor_boxes_idx
- from .table_recognition_post_processing import get_table_recognition_res
- from .result import SingleTableRecognitionResult, TableRecognitionResult
- from ....utils import logging
- from ...utils.pp_option import PaddlePredictorOption
- from ...common.reader import ReadImage
- from ...common.batch_sampler import ImageBatchSampler
- from ..ocr.result import OCRResult
- from ..doc_preprocessor.result import DocPreprocessorResult
- # [TODO] 待更新models_new到models
- from ...models_new.object_detection.result import DetResult
- class TableRecognitionPipeline(BasePipeline):
- """Table Recognition Pipeline"""
- entities = ["table_recognition"]
- def __init__(
- self,
- config: Dict,
- device: str = None,
- pp_option: PaddlePredictorOption = None,
- use_hpip: bool = False,
- hpi_params: Optional[Dict[str, Any]] = None,
- ) -> None:
- """Initializes the layout parsing pipeline.
- Args:
- config (Dict): Configuration dictionary containing various settings.
- device (str, optional): Device to run the predictions on. Defaults to None.
- pp_option (PaddlePredictorOption, optional): PaddlePredictor options. Defaults to None.
- use_hpip (bool, optional): Whether to use high-performance inference (hpip) for prediction. Defaults to False.
- hpi_params (Optional[Dict[str, Any]], optional): HPIP parameters. Defaults to None.
- """
- super().__init__(
- device=device, pp_option=pp_option, use_hpip=use_hpip, hpi_params=hpi_params
- )
- self.use_doc_preprocessor = False
- if "use_doc_preprocessor" in config:
- self.use_doc_preprocessor = config["use_doc_preprocessor"]
- if self.use_doc_preprocessor:
- doc_preprocessor_config = config["SubPipelines"]["DocPreprocessor"]
- self.doc_preprocessor_pipeline = self.create_pipeline(
- doc_preprocessor_config
- )
- self.use_layout_detection = True
- if "use_layout_detection" in config:
- self.use_layout_detection = config["use_layout_detection"]
- if self.use_layout_detection:
- layout_det_config = config["SubModules"]["LayoutDetection"]
- self.layout_det_model = self.create_model(layout_det_config)
- table_structure_config = config["SubModules"]["TableStructureRecognition"]
- self.table_structure_model = self.create_model(table_structure_config)
- self.use_ocr_model = True
- if "use_ocr_model" in config:
- self.use_ocr_model = config["use_ocr_model"]
- if self.use_ocr_model:
- general_ocr_config = config["SubPipelines"]["GeneralOCR"]
- self.general_ocr_pipeline = self.create_pipeline(general_ocr_config)
- self._crop_by_boxes = CropByBoxes()
- self.batch_sampler = ImageBatchSampler(batch_size=1)
- self.img_reader = ReadImage(format="BGR")
- def check_input_params_valid(
- self, input_params: Dict, overall_ocr_res: OCRResult, layout_det_res: DetResult
- ) -> bool:
- """
- Check if the input parameters are valid based on the initialized models.
- Args:
- input_params (Dict): A dictionary containing input parameters.
- overall_ocr_res (OCRResult): Overall OCR result obtained after running the OCR pipeline.
- The overall OCR result with convert_points_to_boxes information.
- layout_det_res (DetResult): The layout detection result.
- Returns:
- bool: True if all required models are initialized according to input parameters, False otherwise.
- """
- if input_params["use_doc_preprocessor"] and not self.use_doc_preprocessor:
- logging.error(
- "Set use_doc_preprocessor, but the models for doc preprocessor are not initialized."
- )
- return False
- if input_params["use_layout_detection"]:
- if layout_det_res is not None:
- logging.error(
- "The layout detection model has already been initialized, please set use_layout_detection=False"
- )
- return False
- if not self.use_layout_detection:
- logging.error(
- "Set use_layout_detection, but the models for layout detection are not initialized."
- )
- return False
- if input_params["use_ocr_model"]:
- if overall_ocr_res is not None:
- logging.error(
- "The OCR models have already been initialized, please set use_ocr_model=False"
- )
- return False
- if not self.use_ocr_model:
- logging.error(
- "Set use_ocr_model, but the models for OCR are not initialized."
- )
- return False
- return True
- def predict_doc_preprocessor_res(
- self, image_array: np.ndarray, input_params: dict
- ) -> tuple[DocPreprocessorResult, np.ndarray]:
- """
- Preprocess the document image based on input parameters.
- Args:
- image_array (np.ndarray): The input image array.
- input_params (dict): Dictionary containing preprocessing parameters.
- Returns:
- tuple[DocPreprocessorResult, np.ndarray]: A tuple containing the preprocessing
- result dictionary and the processed image array.
- """
- if input_params["use_doc_preprocessor"]:
- use_doc_orientation_classify = input_params["use_doc_orientation_classify"]
- use_doc_unwarping = input_params["use_doc_unwarping"]
- doc_preprocessor_res = next(
- self.doc_preprocessor_pipeline(
- image_array,
- use_doc_orientation_classify=use_doc_orientation_classify,
- use_doc_unwarping=use_doc_unwarping,
- )
- )
- doc_preprocessor_image = doc_preprocessor_res["output_img"]
- else:
- doc_preprocessor_res = {}
- doc_preprocessor_image = image_array
- return doc_preprocessor_res, doc_preprocessor_image
- def predict_single_table_recognition_res(
- self,
- image_array: np.ndarray,
- overall_ocr_res: OCRResult,
- table_box: list,
- flag_find_nei_text: bool = True,
- ) -> SingleTableRecognitionResult:
- """
- Predict table recognition results from an image array, layout detection results, and OCR results.
- Args:
- image_array (np.ndarray): The input image represented as a numpy array.
- overall_ocr_res (OCRResult): Overall OCR result obtained after running the OCR pipeline.
- The overall OCR results containing text recognition information.
- table_box (list): The table box coordinates.
- flag_find_nei_text (bool): Whether to find neighboring text.
- Returns:
- SingleTableRecognitionResult: single table recognition result.
- """
- table_structure_pred = next(self.table_structure_model(image_array))
- single_table_recognition_res = get_table_recognition_res(
- table_box, table_structure_pred, overall_ocr_res
- )
- neighbor_text = ""
- if flag_find_nei_text:
- match_idx_list = get_neighbor_boxes_idx(
- overall_ocr_res["dt_boxes"], table_box
- )
- if len(match_idx_list) > 0:
- for idx in match_idx_list:
- neighbor_text += overall_ocr_res["rec_text"][idx] + "; "
- single_table_recognition_res["neighbor_text"] = neighbor_text
- return single_table_recognition_res
- def predict(
- self,
- input: str | list[str] | np.ndarray | list[np.ndarray],
- use_layout_detection: bool = True,
- use_doc_orientation_classify: bool = False,
- use_doc_unwarping: bool = False,
- overall_ocr_res: OCRResult = None,
- layout_det_res: DetResult = None,
- **kwargs
- ) -> TableRecognitionResult:
- """
- This function predicts the layout parsing result for the given input.
- Args:
- input (str | list[str] | np.ndarray | list[np.ndarray]): The input image(s) of pdf(s) to be processed.
- use_layout_detection (bool): Whether to use layout detection.
- use_doc_orientation_classify (bool): Whether to use document orientation classification.
- use_doc_unwarping (bool): Whether to use document unwarping.
- overall_ocr_res (OCRResult): The overall OCR result with convert_points_to_boxes information.
- It will be used if it is not None and use_ocr_model is False.
- layout_det_res (DetResult): The layout detection result.
- It will be used if it is not None and use_layout_detection is False.
- **kwargs: Additional keyword arguments.
- Returns:
- TableRecognitionResult: The predicted table recognition result.
- """
- input_params = {
- "use_layout_detection": use_layout_detection,
- "use_doc_preprocessor": self.use_doc_preprocessor,
- "use_doc_orientation_classify": use_doc_orientation_classify,
- "use_doc_unwarping": use_doc_unwarping,
- "use_ocr_model": self.use_ocr_model,
- }
- if use_doc_orientation_classify or use_doc_unwarping:
- input_params["use_doc_preprocessor"] = True
- else:
- input_params["use_doc_preprocessor"] = False
- if not self.check_input_params_valid(
- input_params, overall_ocr_res, layout_det_res
- ):
- yield None
- for img_id, batch_data in enumerate(self.batch_sampler(input)):
- image_array = self.img_reader(batch_data)[0]
- img_id += 1
- doc_preprocessor_res, doc_preprocessor_image = (
- self.predict_doc_preprocessor_res(image_array, input_params)
- )
- if self.use_ocr_model:
- overall_ocr_res = next(
- self.general_ocr_pipeline(doc_preprocessor_image)
- )
- dt_boxes = convert_points_to_boxes(overall_ocr_res["dt_polys"])
- overall_ocr_res["dt_boxes"] = dt_boxes
- table_res_list = []
- table_region_id = 1
- if not input_params["use_layout_detection"] and layout_det_res is None:
- layout_det_res = {}
- img_height, img_width = doc_preprocessor_image.shape[:2]
- table_box = [0, 0, img_width - 1, img_height - 1]
- single_table_rec_res = self.predict_single_table_recognition_res(
- doc_preprocessor_image,
- overall_ocr_res,
- table_box,
- flag_find_nei_text=False,
- )
- single_table_rec_res["table_region_id"] = table_region_id
- table_res_list.append(single_table_rec_res)
- table_region_id += 1
- else:
- if input_params["use_layout_detection"]:
- layout_det_res = next(self.layout_det_model(doc_preprocessor_image))
- for box_info in layout_det_res["boxes"]:
- if box_info["label"].lower() in ["table"]:
- crop_img_info = self._crop_by_boxes(image_array, [box_info])
- crop_img_info = crop_img_info[0]
- table_box = crop_img_info["box"]
- single_table_rec_res = (
- self.predict_single_table_recognition_res(
- crop_img_info["img"], overall_ocr_res, table_box
- )
- )
- single_table_rec_res["table_region_id"] = table_region_id
- table_res_list.append(single_table_rec_res)
- table_region_id += 1
- single_img_res = {
- "layout_det_res": layout_det_res,
- "doc_preprocessor_res": doc_preprocessor_res,
- "overall_ocr_res": overall_ocr_res,
- "table_res_list": table_res_list,
- "input_params": input_params,
- "img_id": img_id,
- }
- yield TableRecognitionResult(single_img_res)
|