common.py 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import math
  15. import tempfile
  16. from pathlib import Path
  17. from copy import deepcopy
  18. import numpy as np
  19. import cv2
  20. from .....utils.cache import CACHE_DIR
  21. from ....utils.io import ImageReader, ImageWriter, PDFReader
  22. from ...utils.mixin import BatchSizeMixin
  23. from ...base import BaseComponent
  24. from ..read_data import _BaseRead
  25. from . import funcs as F
  26. __all__ = [
  27. "ReadImage",
  28. "Flip",
  29. "Crop",
  30. "Resize",
  31. "ResizeByLong",
  32. "ResizeByShort",
  33. "Pad",
  34. "Normalize",
  35. "ToCHWImage",
  36. "PadStride",
  37. ]
  38. def _check_image_size(input_):
  39. """check image size"""
  40. if not (
  41. isinstance(input_, (list, tuple))
  42. and len(input_) == 2
  43. and isinstance(input_[0], int)
  44. and isinstance(input_[1], int)
  45. ):
  46. raise TypeError(f"{input_} cannot represent a valid image size.")
  47. class ReadImage(_BaseRead):
  48. """Load image from the file."""
  49. INPUT_KEYS = ["img"]
  50. OUTPUT_KEYS = ["img", "img_size", "ori_img", "ori_img_size"]
  51. DEAULT_INPUTS = {"img": "img"}
  52. DEAULT_OUTPUTS = {
  53. "img": "img",
  54. "input_path": "input_path",
  55. "img_size": "img_size",
  56. "ori_img": "ori_img",
  57. "ori_img_size": "ori_img_size",
  58. }
  59. _FLAGS_DICT = {
  60. "BGR": cv2.IMREAD_COLOR,
  61. "RGB": cv2.IMREAD_COLOR,
  62. "GRAY": cv2.IMREAD_GRAYSCALE,
  63. }
  64. SUFFIX = ["jpg", "png", "jpeg", "JPEG", "JPG", "bmp", "PDF", "pdf"]
  65. def __init__(self, batch_size=1, format="BGR"):
  66. """
  67. Initialize the instance.
  68. Args:
  69. format (str, optional): Target color format to convert the image to.
  70. Choices are 'BGR', 'RGB', and 'GRAY'. Default: 'BGR'.
  71. """
  72. super().__init__(batch_size)
  73. self.format = format
  74. flags = self._FLAGS_DICT[self.format]
  75. self._img_reader = ImageReader(backend="opencv", flags=flags)
  76. self._pdf_reader = PDFReader()
  77. self._writer = ImageWriter(backend="opencv")
  78. def apply(self, img):
  79. """apply"""
  80. if isinstance(img, np.ndarray):
  81. # TODO(gaotingquan): set delete to True
  82. with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_file:
  83. img_path = Path(temp_file.name)
  84. self._writer.write(img_path, img)
  85. yield [
  86. {
  87. "input_path": img_path,
  88. "img": img,
  89. "img_size": [img.shape[1], img.shape[0]],
  90. "ori_img": deepcopy(img),
  91. "ori_img_size": deepcopy([img.shape[1], img.shape[0]]),
  92. }
  93. ]
  94. elif isinstance(img, str):
  95. file_path = img
  96. file_path = self._download_from_url(file_path)
  97. file_list = self._get_files_list(file_path)
  98. batch = []
  99. for file_path in file_list:
  100. img = self._read_img(file_path)
  101. batch.extend(img)
  102. if len(batch) >= self.batch_size:
  103. yield batch
  104. batch = []
  105. if len(batch) > 0:
  106. yield batch
  107. else:
  108. raise TypeError(
  109. f"ReadImage only supports the following types:\n"
  110. f"1. str, indicating a image file path or a directory containing image files.\n"
  111. f"2. numpy.ndarray.\n"
  112. f"However, got type: {type(img).__name__}."
  113. )
  114. def _read(self, file_path):
  115. if file_path:
  116. return self._read_pdf(file_path)
  117. else:
  118. return self._read_img(file_path)
  119. def _read_img(self, img_path):
  120. blob = self._img_reader.read(img_path)
  121. if blob is None:
  122. raise Exception("Image read Error")
  123. if self.format == "RGB":
  124. if blob.ndim != 3:
  125. raise RuntimeError("Array is not 3-dimensional.")
  126. # BGR to RGB
  127. blob = blob[..., ::-1]
  128. return [
  129. {
  130. "input_path": img_path,
  131. "img": blob,
  132. "img_size": [blob.shape[1], blob.shape[0]],
  133. "ori_img": deepcopy(blob),
  134. "ori_img_size": deepcopy([blob.shape[1], blob.shape[0]]),
  135. }
  136. ]
  137. def _read_pdf(self, pdf_path):
  138. img_list = self._pdf_reader.read(pdf_path)
  139. return [
  140. {
  141. "input_path": pdf_path,
  142. "img": img,
  143. "img_size": [img.shape[1], img.shape[0]],
  144. "ori_img": deepcopy(img),
  145. "ori_img_size": deepcopy([img.shape[1], img.shape[0]]),
  146. }
  147. for img in img_list
  148. ]
  149. class GetImageInfo(BaseComponent):
  150. """Get Image Info"""
  151. INPUT_KEYS = "img"
  152. OUTPUT_KEYS = "img_size"
  153. DEAULT_INPUTS = {"img": "img"}
  154. DEAULT_OUTPUTS = {"img_size": "img_size"}
  155. def __init__(self):
  156. super().__init__()
  157. def apply(self, img):
  158. """apply"""
  159. return {"img_size": [img.shape[1], img.shape[0]]}
  160. class Flip(BaseComponent):
  161. """Flip the image vertically or horizontally."""
  162. INPUT_KEYS = "img"
  163. OUTPUT_KEYS = "img"
  164. DEAULT_INPUTS = {"img": "img"}
  165. DEAULT_OUTPUTS = {"img": "img"}
  166. def __init__(self, mode="H"):
  167. """
  168. Initialize the instance.
  169. Args:
  170. mode (str, optional): 'H' for horizontal flipping and 'V' for vertical
  171. flipping. Default: 'H'.
  172. """
  173. super().__init__()
  174. if mode not in ("H", "V"):
  175. raise ValueError("`mode` should be 'H' or 'V'.")
  176. self.mode = mode
  177. def apply(self, img):
  178. """apply"""
  179. if self.mode == "H":
  180. img = F.flip_h(img)
  181. elif self.mode == "V":
  182. img = F.flip_v(img)
  183. return {"img": img}
  184. class Crop(BaseComponent):
  185. """Crop region from the image."""
  186. INPUT_KEYS = "img"
  187. OUTPUT_KEYS = ["img", "img_size"]
  188. DEAULT_INPUTS = {"img": "img"}
  189. DEAULT_OUTPUTS = {"img": "img", "img_size": "img_size"}
  190. def __init__(self, crop_size, mode="C"):
  191. """
  192. Initialize the instance.
  193. Args:
  194. crop_size (list|tuple|int): Width and height of the region to crop.
  195. mode (str, optional): 'C' for cropping the center part and 'TL' for
  196. cropping the top left part. Default: 'C'.
  197. """
  198. super().__init__()
  199. if isinstance(crop_size, int):
  200. crop_size = [crop_size, crop_size]
  201. _check_image_size(crop_size)
  202. self.crop_size = crop_size
  203. if mode not in ("C", "TL"):
  204. raise ValueError("Unsupported interpolation method")
  205. self.mode = mode
  206. def apply(self, img):
  207. """apply"""
  208. h, w = img.shape[:2]
  209. cw, ch = self.crop_size
  210. if self.mode == "C":
  211. x1 = max(0, (w - cw) // 2)
  212. y1 = max(0, (h - ch) // 2)
  213. elif self.mode == "TL":
  214. x1, y1 = 0, 0
  215. x2 = min(w, x1 + cw)
  216. y2 = min(h, y1 + ch)
  217. coords = (x1, y1, x2, y2)
  218. if coords == (0, 0, w, h):
  219. raise ValueError(
  220. f"Input image ({w}, {h}) smaller than the target size ({cw}, {ch})."
  221. )
  222. img = F.slice(img, coords=coords)
  223. return {"img": img, "img_size": [img.shape[1], img.shape[0]]}
  224. class _BaseResize(BaseComponent):
  225. _INTERP_DICT = {
  226. "NEAREST": cv2.INTER_NEAREST,
  227. "LINEAR": cv2.INTER_LINEAR,
  228. "CUBIC": cv2.INTER_CUBIC,
  229. "AREA": cv2.INTER_AREA,
  230. "LANCZOS4": cv2.INTER_LANCZOS4,
  231. }
  232. def __init__(self, size_divisor, interp):
  233. super().__init__()
  234. if size_divisor is not None:
  235. assert isinstance(
  236. size_divisor, int
  237. ), "`size_divisor` should be None or int."
  238. self.size_divisor = size_divisor
  239. try:
  240. interp = self._INTERP_DICT[interp]
  241. except KeyError:
  242. raise ValueError(
  243. "`interp` should be one of {}.".format(self._INTERP_DICT.keys())
  244. )
  245. self.interp = interp
  246. @staticmethod
  247. def _rescale_size(img_size, target_size):
  248. """rescale size"""
  249. scale = min(max(target_size) / max(img_size), min(target_size) / min(img_size))
  250. rescaled_size = [round(i * scale) for i in img_size]
  251. return rescaled_size, scale
  252. class Resize(_BaseResize):
  253. """Resize the image."""
  254. INPUT_KEYS = "img"
  255. OUTPUT_KEYS = ["img", "img_size", "scale_factors"]
  256. DEAULT_INPUTS = {"img": "img"}
  257. DEAULT_OUTPUTS = {
  258. "img": "img",
  259. "img_size": "img_size",
  260. "scale_factors": "scale_factors",
  261. }
  262. def __init__(
  263. self, target_size, keep_ratio=False, size_divisor=None, interp="LINEAR"
  264. ):
  265. """
  266. Initialize the instance.
  267. Args:
  268. target_size (list|tuple|int): Target width and height.
  269. keep_ratio (bool, optional): Whether to keep the aspect ratio of resized
  270. image. Default: False.
  271. size_divisor (int|None, optional): Divisor of resized image size.
  272. Default: None.
  273. interp (str, optional): Interpolation method. Choices are 'NEAREST',
  274. 'LINEAR', 'CUBIC', 'AREA', and 'LANCZOS4'. Default: 'LINEAR'.
  275. """
  276. super().__init__(size_divisor=size_divisor, interp=interp)
  277. if isinstance(target_size, int):
  278. target_size = [target_size, target_size]
  279. _check_image_size(target_size)
  280. self.target_size = target_size
  281. self.keep_ratio = keep_ratio
  282. def apply(self, img):
  283. """apply"""
  284. target_size = self.target_size
  285. original_size = img.shape[:2]
  286. if self.keep_ratio:
  287. h, w = img.shape[0:2]
  288. target_size, _ = self._rescale_size((h, w), self.target_size)
  289. if self.size_divisor:
  290. target_size = [
  291. math.ceil(i / self.size_divisor) * self.size_divisor
  292. for i in target_size
  293. ]
  294. img_scale_w, img_scale_h = [
  295. target_size[1] / original_size[1],
  296. target_size[0] / original_size[0],
  297. ]
  298. img = F.resize(img, target_size, interp=self.interp)
  299. return {
  300. "img": img,
  301. "img_size": [img.shape[1], img.shape[0]],
  302. "scale_factors": [img_scale_w, img_scale_h],
  303. }
  304. class ResizeByLong(_BaseResize):
  305. """
  306. Proportionally resize the image by specifying the target length of the
  307. longest side.
  308. """
  309. INPUT_KEYS = "img"
  310. OUTPUT_KEYS = ["img", "img_size"]
  311. DEAULT_INPUTS = {"img": "img"}
  312. DEAULT_OUTPUTS = {"img": "img", "img_size": "img_size"}
  313. def __init__(self, target_long_edge, size_divisor=None, interp="LINEAR"):
  314. """
  315. Initialize the instance.
  316. Args:
  317. target_long_edge (int): Target length of the longest side of image.
  318. size_divisor (int|None, optional): Divisor of resized image size.
  319. Default: None.
  320. interp (str, optional): Interpolation method. Choices are 'NEAREST',
  321. 'LINEAR', 'CUBIC', 'AREA', and 'LANCZOS4'. Default: 'LINEAR'.
  322. """
  323. super().__init__(size_divisor=size_divisor, interp=interp)
  324. self.target_long_edge = target_long_edge
  325. def apply(self, img):
  326. """apply"""
  327. h, w = img.shape[:2]
  328. scale = self.target_long_edge / max(h, w)
  329. h_resize = round(h * scale)
  330. w_resize = round(w * scale)
  331. if self.size_divisor is not None:
  332. h_resize = math.ceil(h_resize / self.size_divisor) * self.size_divisor
  333. w_resize = math.ceil(w_resize / self.size_divisor) * self.size_divisor
  334. img = F.resize(img, (w_resize, h_resize), interp=self.interp)
  335. return {"img": img, "img_size": [img.shape[1], img.shape[0]]}
  336. class ResizeByShort(_BaseResize):
  337. """
  338. Proportionally resize the image by specifying the target length of the
  339. shortest side.
  340. """
  341. INPUT_KEYS = "img"
  342. OUTPUT_KEYS = ["img", "img_size"]
  343. DEAULT_INPUTS = {"img": "img"}
  344. DEAULT_OUTPUTS = {"img": "img", "img_size": "img_size"}
  345. def __init__(self, target_short_edge, size_divisor=None, interp="LINEAR"):
  346. """
  347. Initialize the instance.
  348. Args:
  349. target_short_edge (int): Target length of the shortest side of image.
  350. size_divisor (int|None, optional): Divisor of resized image size.
  351. Default: None.
  352. interp (str, optional): Interpolation method. Choices are 'NEAREST',
  353. 'LINEAR', 'CUBIC', 'AREA', and 'LANCZOS4'. Default: 'LINEAR'.
  354. """
  355. super().__init__(size_divisor=size_divisor, interp=interp)
  356. self.target_short_edge = target_short_edge
  357. def apply(self, img):
  358. """apply"""
  359. h, w = img.shape[:2]
  360. scale = self.target_short_edge / min(h, w)
  361. h_resize = round(h * scale)
  362. w_resize = round(w * scale)
  363. if self.size_divisor is not None:
  364. h_resize = math.ceil(h_resize / self.size_divisor) * self.size_divisor
  365. w_resize = math.ceil(w_resize / self.size_divisor) * self.size_divisor
  366. img = F.resize(img, (w_resize, h_resize), interp=self.interp)
  367. return {"img": img, "img_size": [img.shape[1], img.shape[0]]}
  368. class Pad(BaseComponent):
  369. """Pad the image."""
  370. INPUT_KEYS = "img"
  371. OUTPUT_KEYS = ["img", "img_size"]
  372. DEAULT_INPUTS = {"img": "img"}
  373. DEAULT_OUTPUTS = {"img": "img", "img_size": "img_size"}
  374. def __init__(self, target_size, val=127.5):
  375. """
  376. Initialize the instance.
  377. Args:
  378. target_size (list|tuple|int): Target width and height of the image after
  379. padding.
  380. val (float, optional): Value to fill the padded area. Default: 127.5.
  381. """
  382. super().__init__()
  383. if isinstance(target_size, int):
  384. target_size = [target_size, target_size]
  385. _check_image_size(target_size)
  386. self.target_size = target_size
  387. self.val = val
  388. def apply(self, img):
  389. """apply"""
  390. h, w = img.shape[:2]
  391. tw, th = self.target_size
  392. ph = th - h
  393. pw = tw - w
  394. if ph < 0 or pw < 0:
  395. raise ValueError(
  396. f"Input image ({w}, {h}) smaller than the target size ({tw}, {th})."
  397. )
  398. else:
  399. img = F.pad(img, pad=(0, ph, 0, pw), val=self.val)
  400. return {"img": img, "img_size": [img.shape[1], img.shape[0]]}
  401. class PadStride(BaseComponent):
  402. """padding image for model with FPN , instead PadBatch(pad_to_stride, pad_gt) in original config
  403. Args:
  404. stride (bool): model with FPN need image shape % stride == 0
  405. """
  406. INPUT_KEYS = "img"
  407. OUTPUT_KEYS = "img"
  408. DEAULT_INPUTS = {"img": "img"}
  409. DEAULT_OUTPUTS = {"img": "img"}
  410. def __init__(self, stride=0):
  411. super().__init__()
  412. self.coarsest_stride = stride
  413. def apply(self, img):
  414. """
  415. Args:
  416. im (np.ndarray): image (np.ndarray)
  417. Returns:
  418. im (np.ndarray): processed image (np.ndarray)
  419. """
  420. im = img
  421. coarsest_stride = self.coarsest_stride
  422. if coarsest_stride <= 0:
  423. return {"img": im}
  424. im_c, im_h, im_w = im.shape
  425. pad_h = int(np.ceil(float(im_h) / coarsest_stride) * coarsest_stride)
  426. pad_w = int(np.ceil(float(im_w) / coarsest_stride) * coarsest_stride)
  427. padding_im = np.zeros((im_c, pad_h, pad_w), dtype=np.float32)
  428. padding_im[:, :im_h, :im_w] = im
  429. return {"img": padding_im}
  430. class Normalize(BaseComponent):
  431. """Normalize the image."""
  432. INPUT_KEYS = "img"
  433. OUTPUT_KEYS = "img"
  434. DEAULT_INPUTS = {"img": "img"}
  435. DEAULT_OUTPUTS = {"img": "img"}
  436. def __init__(self, scale=1.0 / 255, mean=0.5, std=0.5, preserve_dtype=False):
  437. """
  438. Initialize the instance.
  439. Args:
  440. scale (float, optional): Scaling factor to apply to the image before
  441. applying normalization. Default: 1/255.
  442. mean (float|tuple|list, optional): Means for each channel of the image.
  443. Default: 0.5.
  444. std (float|tuple|list, optional): Standard deviations for each channel
  445. of the image. Default: 0.5.
  446. preserve_dtype (bool, optional): Whether to preserve the original dtype
  447. of the image.
  448. """
  449. super().__init__()
  450. self.scale = np.float32(scale)
  451. if isinstance(mean, float):
  452. mean = [mean]
  453. self.mean = np.asarray(mean).astype("float32")
  454. if isinstance(std, float):
  455. std = [std]
  456. self.std = np.asarray(std).astype("float32")
  457. self.preserve_dtype = preserve_dtype
  458. def apply(self, img):
  459. """apply"""
  460. old_type = img.dtype
  461. # XXX: If `old_type` has higher precision than float32,
  462. # we will lose some precision.
  463. img = img.astype("float32", copy=False)
  464. img *= self.scale
  465. img -= self.mean
  466. img /= self.std
  467. if self.preserve_dtype:
  468. img = img.astype(old_type, copy=False)
  469. return {"img": img}
  470. class ToCHWImage(BaseComponent):
  471. """Reorder the dimensions of the image from HWC to CHW."""
  472. INPUT_KEYS = "img"
  473. OUTPUT_KEYS = "img"
  474. DEAULT_INPUTS = {"img": "img"}
  475. DEAULT_OUTPUTS = {"img": "img"}
  476. def apply(self, img):
  477. """apply"""
  478. img = img.transpose((2, 0, 1))
  479. return {"img": img}