| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- try:
- from collections.abc import Sequence
- except Exception:
- from collections import Sequence
- import random
- import os.path as osp
- import numpy as np
- import cv2
- from PIL import Image, ImageEnhance
- from .ops import *
- from .box_utils import *
- class DetTransform:
- """检测数据处理基类
- """
- def __init__(self):
- pass
- class Compose(DetTransform):
- """根据数据预处理/增强列表对输入数据进行操作。
- 所有操作的输入图像流形状均是[H, W, C],其中H为图像高,W为图像宽,C为图像通道数。
- Args:
- transforms (list): 数据预处理/增强列表。
- Raises:
- TypeError: 形参数据类型不满足需求。
- ValueError: 数据长度不匹配。
- """
- def __init__(self, transforms):
- if not isinstance(transforms, list):
- raise TypeError('The transforms must be a list!')
- if len(transforms) < 1:
- raise ValueError('The length of transforms ' + \
- 'must be equal or larger than 1!')
- self.transforms = transforms
- self.use_mixup = False
- for t in self.transforms:
- if type(t).__name__ == 'MixupImage':
- self.use_mixup = True
- def __call__(self, im, im_info=None, label_info=None):
- """
- Args:
- im (str/np.ndarray): 图像路径/图像np.ndarray数据。
- im_info (dict): 存储与图像相关的信息,dict中的字段如下:
- - im_id (np.ndarray): 图像序列号,形状为(1,)。
- - image_shape (np.ndarray): 图像原始大小,形状为(2,),
- image_shape[0]为高,image_shape[1]为宽。
- - mixup (list): list为[im, im_info, label_info],分别对应
- 与当前图像进行mixup的图像np.ndarray数据、图像相关信息、标注框相关信息;
- 注意,当前epoch若无需进行mixup,则无该字段。
- label_info (dict): 存储与标注框相关的信息,dict中的字段如下:
- - gt_bbox (np.ndarray): 真实标注框坐标[x1, y1, x2, y2],形状为(n, 4),
- 其中n代表真实标注框的个数。
- - gt_class (np.ndarray): 每个真实标注框对应的类别序号,形状为(n, 1),
- 其中n代表真实标注框的个数。
- - gt_score (np.ndarray): 每个真实标注框对应的混合得分,形状为(n, 1),
- 其中n代表真实标注框的个数。
- - gt_poly (list): 每个真实标注框内的多边形分割区域,每个分割区域由点的x、y坐标组成,
- 长度为n,其中n代表真实标注框的个数。
- - is_crowd (np.ndarray): 每个真实标注框中是否是一组对象,形状为(n, 1),
- 其中n代表真实标注框的个数。
- - difficult (np.ndarray): 每个真实标注框中的对象是否为难识别对象,形状为(n, 1),
- 其中n代表真实标注框的个数。
- Returns:
- tuple: 根据网络所需字段所组成的tuple;
- 字段由transforms中的最后一个数据预处理操作决定。
- """
- def decode_image(im_file, im_info, label_info):
- if im_info is None:
- im_info = dict()
- if isinstance(im_file, np.ndarray):
- if len(im_file.shape) != 3:
- raise Exception(
- "im should be 3-dimensions, but now is {}-dimensions".
- format(len(im_file.shape)))
- im = im_file
- else:
- try:
- im = cv2.imread(im_file).astype('float32')
- except:
- raise TypeError('Can\'t read The image file {}!'.format(
- im_file))
- im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
- # make default im_info with [h, w, 1]
- im_info['im_resize_info'] = np.array(
- [im.shape[0], im.shape[1], 1.], dtype=np.float32)
- im_info['image_shape'] = np.array([im.shape[0],
- im.shape[1]]).astype('int32')
- if not self.use_mixup:
- if 'mixup' in im_info:
- del im_info['mixup']
- # decode mixup image
- if 'mixup' in im_info:
- im_info['mixup'] = \
- decode_image(im_info['mixup'][0],
- im_info['mixup'][1],
- im_info['mixup'][2])
- if label_info is None:
- return (im, im_info)
- else:
- return (im, im_info, label_info)
- outputs = decode_image(im, im_info, label_info)
- im = outputs[0]
- im_info = outputs[1]
- if len(outputs) == 3:
- label_info = outputs[2]
- for op in self.transforms:
- if im is None:
- return None
- outputs = op(im, im_info, label_info)
- im = outputs[0]
- return outputs
- def add_augmenters(self, augmenters):
- if not isinstance(augmenters, list):
- raise Exception(
- "augmenters should be list type in func add_augmenters()")
- transform_names = [type(x).__name__ for x in self.transforms]
- for aug in augmenters:
- if type(aug).__name__ in transform_names:
- print("{} is already in ComposedTransforms, need to remove it from add_augmenters().".format(type(aug).__name__))
- self.transforms = augmenters + self.transforms
- class ResizeByShort(DetTransform):
- """根据图像的短边调整图像大小(resize)。
- 1. 获取图像的长边和短边长度。
- 2. 根据短边与short_size的比例,计算长边的目标长度,
- 此时高、宽的resize比例为short_size/原图短边长度。
- 3. 如果max_size>0,调整resize比例:
- 如果长边的目标长度>max_size,则高、宽的resize比例为max_size/原图长边长度。
- 4. 根据调整大小的比例对图像进行resize。
- Args:
- target_size (int): 短边目标长度。默认为800。
- max_size (int): 长边目标长度的最大限制。默认为1333。
- Raises:
- TypeError: 形参数据类型不满足需求。
- """
- def __init__(self, short_size=800, max_size=1333):
- self.max_size = int(max_size)
- if not isinstance(short_size, int):
- raise TypeError(
- "Type of short_size is invalid. Must be Integer, now is {}".
- format(type(short_size)))
- self.short_size = short_size
- if not (isinstance(self.max_size, int)):
- raise TypeError("max_size: input type is invalid.")
- def __call__(self, im, im_info=None, label_info=None):
- """
- Args:
- im (numnp.ndarraypy): 图像np.ndarray数据。
- im_info (dict, 可选): 存储与图像相关的信息。
- label_info (dict, 可选): 存储与标注框相关的信息。
- Returns:
- tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
- 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
- 存储与标注框相关信息的字典。
- 其中,im_info更新字段为:
- - im_resize_info (np.ndarray): resize后的图像高、resize后的图像宽、resize后的图像相对原始图的缩放比例
- 三者组成的np.ndarray,形状为(3,)。
- Raises:
- TypeError: 形参数据类型不满足需求。
- ValueError: 数据长度不匹配。
- """
- if im_info is None:
- im_info = dict()
- if not isinstance(im, np.ndarray):
- raise TypeError("ResizeByShort: image type is not numpy.")
- if len(im.shape) != 3:
- raise ValueError('ResizeByShort: image is not 3-dimensional.')
- im_short_size = min(im.shape[0], im.shape[1])
- im_long_size = max(im.shape[0], im.shape[1])
- scale = float(self.short_size) / im_short_size
- if self.max_size > 0 and np.round(scale *
- im_long_size) > self.max_size:
- scale = float(self.max_size) / float(im_long_size)
- resized_width = int(round(im.shape[1] * scale))
- resized_height = int(round(im.shape[0] * scale))
- im_resize_info = [resized_height, resized_width, scale]
- im = cv2.resize(
- im, (resized_width, resized_height),
- interpolation=cv2.INTER_LINEAR)
- im_info['im_resize_info'] = np.array(im_resize_info).astype(np.float32)
- if label_info is None:
- return (im, im_info)
- else:
- return (im, im_info, label_info)
- class Padding(DetTransform):
- """1.将图像的长和宽padding至coarsest_stride的倍数。如输入图像为[300, 640],
- `coarest_stride`为32,则由于300不为32的倍数,因此在图像最右和最下使用0值
- 进行padding,最终输出图像为[320, 640]。
- 2.或者,将图像的长和宽padding到target_size指定的shape,如输入的图像为[300,640],
- a. `target_size` = 960,在图像最右和最下使用0值进行padding,最终输出
- 图像为[960, 960]。
- b. `target_size` = [640, 960],在图像最右和最下使用0值进行padding,最终
- 输出图像为[640, 960]。
- 1. 如果coarsest_stride为1,target_size为None则直接返回。
- 2. 获取图像的高H、宽W。
- 3. 计算填充后图像的高H_new、宽W_new。
- 4. 构建大小为(H_new, W_new, 3)像素值为0的np.ndarray,
- 并将原图的np.ndarray粘贴于左上角。
- Args:
- coarsest_stride (int): 填充后的图像长、宽为该参数的倍数,默认为1。
- target_size (int|list|tuple): 填充后的图像长、宽,默认为None,coarset_stride优先级更高。
- Raises:
- TypeError: 形参`target_size`数据类型不满足需求。
- ValueError: 形参`target_size`为(list|tuple)时,长度不满足需求。
- """
- def __init__(self, coarsest_stride=1, target_size=None):
- self.coarsest_stride = coarsest_stride
- if target_size is not None:
- if not isinstance(target_size, int):
- if not isinstance(target_size, tuple) and not isinstance(
- target_size, list):
- raise TypeError(
- "Padding: Type of target_size must in (int|list|tuple)."
- )
- elif len(target_size) != 2:
- raise ValueError(
- "Padding: Length of target_size must equal 2.")
- self.target_size = target_size
- def __call__(self, im, im_info=None, label_info=None):
- """
- Args:
- im (numnp.ndarraypy): 图像np.ndarray数据。
- im_info (dict, 可选): 存储与图像相关的信息。
- label_info (dict, 可选): 存储与标注框相关的信息。
- Returns:
- tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
- 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
- 存储与标注框相关信息的字典。
- Raises:
- TypeError: 形参数据类型不满足需求。
- ValueError: 数据长度不匹配。
- ValueError: coarsest_stride,target_size需有且只有一个被指定。
- ValueError: target_size小于原图的大小。
- """
- if im_info is None:
- im_info = dict()
- if not isinstance(im, np.ndarray):
- raise TypeError("Padding: image type is not numpy.")
- if len(im.shape) != 3:
- raise ValueError('Padding: image is not 3-dimensional.')
- im_h, im_w, im_c = im.shape[:]
- if isinstance(self.target_size, int):
- padding_im_h = self.target_size
- padding_im_w = self.target_size
- elif isinstance(self.target_size, list) or isinstance(self.target_size,
- tuple):
- padding_im_w = self.target_size[0]
- padding_im_h = self.target_size[1]
- elif self.coarsest_stride > 0:
- padding_im_h = int(
- np.ceil(im_h / self.coarsest_stride) * self.coarsest_stride)
- padding_im_w = int(
- np.ceil(im_w / self.coarsest_stride) * self.coarsest_stride)
- else:
- raise ValueError(
- "coarsest_stridei(>1) or target_size(list|int) need setting in Padding transform"
- )
- pad_height = padding_im_h - im_h
- pad_width = padding_im_w - im_w
- if pad_height < 0 or pad_width < 0:
- raise ValueError(
- 'the size of image should be less than target_size, but the size of image ({}, {}), is larger than target_size ({}, {})'
- .format(im_w, im_h, padding_im_w, padding_im_h))
- padding_im = np.zeros(
- (padding_im_h, padding_im_w, im_c), dtype=np.float32)
- padding_im[:im_h, :im_w, :] = im
- if label_info is None:
- return (padding_im, im_info)
- else:
- return (padding_im, im_info, label_info)
- class Resize(DetTransform):
- """调整图像大小(resize)。
- - 当目标大小(target_size)类型为int时,根据插值方式,
- 将图像resize为[target_size, target_size]。
- - 当目标大小(target_size)类型为list或tuple时,根据插值方式,
- 将图像resize为target_size。
- 注意:当插值方式为“RANDOM”时,则随机选取一种插值方式进行resize。
- Args:
- target_size (int/list/tuple): 短边目标长度。默认为608。
- interp (str): resize的插值方式,与opencv的插值方式对应,取值范围为
- ['NEAREST', 'LINEAR', 'CUBIC', 'AREA', 'LANCZOS4', 'RANDOM']。默认为"LINEAR"。
- Raises:
- TypeError: 形参数据类型不满足需求。
- ValueError: 插值方式不在['NEAREST', 'LINEAR', 'CUBIC',
- 'AREA', 'LANCZOS4', 'RANDOM']中。
- """
- # The interpolation mode
- interp_dict = {
- 'NEAREST': cv2.INTER_NEAREST,
- 'LINEAR': cv2.INTER_LINEAR,
- 'CUBIC': cv2.INTER_CUBIC,
- 'AREA': cv2.INTER_AREA,
- 'LANCZOS4': cv2.INTER_LANCZOS4
- }
- def __init__(self, target_size=608, interp='LINEAR'):
- self.interp = interp
- if not (interp == "RANDOM" or interp in self.interp_dict):
- raise ValueError("interp should be one of {}".format(
- self.interp_dict.keys()))
- if isinstance(target_size, list) or isinstance(target_size, tuple):
- if len(target_size) != 2:
- raise TypeError(
- 'when target is list or tuple, it should include 2 elements, but it is {}'
- .format(target_size))
- elif not isinstance(target_size, int):
- raise TypeError(
- "Type of target_size is invalid. Must be Integer or List or tuple, now is {}"
- .format(type(target_size)))
- self.target_size = target_size
- def __call__(self, im, im_info=None, label_info=None):
- """
- Args:
- im (np.ndarray): 图像np.ndarray数据。
- im_info (dict, 可选): 存储与图像相关的信息。
- label_info (dict, 可选): 存储与标注框相关的信息。
- Returns:
- tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
- 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
- 存储与标注框相关信息的字典。
- Raises:
- TypeError: 形参数据类型不满足需求。
- ValueError: 数据长度不匹配。
- """
- if im_info is None:
- im_info = dict()
- if not isinstance(im, np.ndarray):
- raise TypeError("Resize: image type is not numpy.")
- if len(im.shape) != 3:
- raise ValueError('Resize: image is not 3-dimensional.')
- if self.interp == "RANDOM":
- interp = random.choice(list(self.interp_dict.keys()))
- else:
- interp = self.interp
- im = resize(im, self.target_size, self.interp_dict[interp])
- if label_info is None:
- return (im, im_info)
- else:
- return (im, im_info, label_info)
- class Normalize(DetTransform):
- """对图像进行标准化。
- 1. 归一化图像到到区间[0.0, 1.0]。
- 2. 对图像进行减均值除以标准差操作。
- Args:
- mean (list): 图像数据集的均值。默认为[0.485, 0.456, 0.406]。
- std (list): 图像数据集的标准差。默认为[0.229, 0.224, 0.225]。
- Raises:
- TypeError: 形参数据类型不满足需求。
- """
- def __init__(self, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]):
- self.mean = mean
- self.std = std
- if not (isinstance(self.mean, list) and isinstance(self.std, list)):
- raise TypeError("NormalizeImage: input type is invalid.")
- from functools import reduce
- if reduce(lambda x, y: x * y, self.std) == 0:
- raise TypeError('NormalizeImage: std is invalid!')
- def __call__(self, im, im_info=None, label_info=None):
- """
- Args:
- im (numnp.ndarraypy): 图像np.ndarray数据。
- im_info (dict, 可选): 存储与图像相关的信息。
- label_info (dict, 可选): 存储与标注框相关的信息。
- Returns:
- tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
- 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
- 存储与标注框相关信息的字典。
- """
- mean = np.array(self.mean)[np.newaxis, np.newaxis, :]
- std = np.array(self.std)[np.newaxis, np.newaxis, :]
- im = normalize(im, mean, std)
- if label_info is None:
- return (im, im_info)
- else:
- return (im, im_info, label_info)
- class ArrangeYOLOv3(DetTransform):
- """获取YOLOv3模型训练/验证/预测所需信息。
- Args:
- mode (str): 指定数据用于何种用途,取值范围为['train', 'eval', 'test', 'quant']。
- Raises:
- ValueError: mode的取值不在['train', 'eval', 'test', 'quant']之内。
- """
- def __init__(self, mode=None):
- if mode not in ['train', 'eval', 'test', 'quant']:
- raise ValueError(
- "mode must be in ['train', 'eval', 'test', 'quant']!")
- self.mode = mode
- def __call__(self, im, im_info=None, label_info=None):
- """
- Args:
- im (np.ndarray): 图像np.ndarray数据。
- im_info (dict, 可选): 存储与图像相关的信息。
- label_info (dict, 可选): 存储与标注框相关的信息。
- Returns:
- tuple: 当mode为'train'时,返回(im, gt_bbox, gt_class, gt_score, im_shape),分别对应
- 图像np.ndarray数据、真实标注框、真实标注框对应的类别、真实标注框混合得分、图像大小信息;
- 当mode为'eval'时,返回(im, im_shape, im_id, gt_bbox, gt_class, difficult),
- 分别对应图像np.ndarray数据、图像大小信息、图像id、真实标注框、真实标注框对应的类别、
- 真实标注框是否为难识别对象;当mode为'test'或'quant'时,返回(im, im_shape),
- 分别对应图像np.ndarray数据、图像大小信息。
- Raises:
- TypeError: 形参数据类型不满足需求。
- ValueError: 数据长度不匹配。
- """
- im = permute(im, False)
- if self.mode == 'train':
- pass
- elif self.mode == 'eval':
- pass
- else:
- if im_info is None:
- raise TypeError('Cannot do ArrangeYolov3! ' +
- 'Becasuse the im_info can not be None!')
- im_shape = im_info['image_shape']
- outputs = (im, im_shape)
- return outputs
- class ComposedYOLOv3Transforms(Compose):
- """YOLOv3模型的图像预处理流程,具体如下,
- 训练阶段:
- 1. 在前mixup_epoch轮迭代中,使用MixupImage策略,见https://paddlex.readthedocs.io/zh_CN/latest/apis/transforms/det_transforms.html#mixupimage
- 2. 对图像进行随机扰动,包括亮度,对比度,饱和度和色调
- 3. 随机扩充图像,见https://paddlex.readthedocs.io/zh_CN/latest/apis/transforms/det_transforms.html#randomexpand
- 4. 随机裁剪图像
- 5. 将4步骤的输出图像Resize成shape参数的大小
- 6. 随机0.5的概率水平翻转图像
- 7. 图像归一化
- 验证/预测阶段:
- 1. 将图像Resize成shape参数大小
- 2. 图像归一化
- Args:
- mode(str): 图像处理流程所处阶段,训练/验证/预测,分别对应'train', 'eval', 'test'
- shape(list): 输入模型中图像的大小,输入模型的图像会被Resize成此大小
- mixup_epoch(int): 模型训练过程中,前mixup_epoch会使用mixup策略
- mean(list): 图像均值
- std(list): 图像方差
- """
- def __init__(self,
- mode,
- shape=[608, 608],
- mixup_epoch=250,
- mean=[0.485, 0.456, 0.406],
- std=[0.229, 0.224, 0.225]):
- width = shape
- if isinstance(shape, list):
- if shape[0] != shape[1]:
- raise Exception(
- "In YOLOv3 model, width and height should be equal")
- width = shape[0]
- if width % 32 != 0:
- raise Exception(
- "In YOLOv3 model, width and height should be multiple of 32, e.g 224、256、320...."
- )
- if mode == 'train':
- # 训练时的transforms,包含数据增强
- pass
- else:
- # 验证/预测时的transforms
- transforms = [
- Resize(
- target_size=width, interp='CUBIC'), Normalize(
- mean=mean, std=std)
- ]
- super(ComposedYOLOv3Transforms, self).__init__(transforms)
|