| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177 |
- #copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- #Licensed under the Apache License, Version 2.0 (the "License");
- #you may not use this file except in compliance with the License.
- #You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- #Unless required by applicable law or agreed to in writing, software
- #distributed under the License is distributed on an "AS IS" BASIS,
- #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- #See the License for the specific language governing permissions and
- #limitations under the License.
- from __future__ import absolute_import
- import paddle.fluid as fluid
- import paddlex
- from collections import OrderedDict
- from .deeplabv3p import DeepLabv3p
- class HRNet(DeepLabv3p):
- """实现HRNet网络的构建并进行训练、评估、预测和模型导出。
- Args:
- num_classes (int): 类别数。
- width (int): 高分辨率分支中特征层的通道数量。默认值为18。可选择取值为[18, 30, 32, 40, 44, 48, 60, 64]。
- use_bce_loss (bool): 是否使用bce loss作为网络的损失函数,只能用于两类分割。可与dice loss同时使用。默认False。
- use_dice_loss (bool): 是否使用dice loss作为网络的损失函数,只能用于两类分割,可与bce loss同时使用。
- 当use_bce_loss和use_dice_loss都为False时,使用交叉熵损失函数。默认False。
- class_weight (list/str): 交叉熵损失函数各类损失的权重。当class_weight为list的时候,长度应为
- num_classes。当class_weight为str时, weight.lower()应为'dynamic',这时会根据每一轮各类像素的比重
- 自行计算相应的权重,每一类的权重为:每类的比例 * num_classes。class_weight取默认值None是,各类的权重1,
- 即平时使用的交叉熵损失函数。
- ignore_index (int): label上忽略的值,label为ignore_index的像素不参与损失函数的计算。默认255。
- Raises:
- ValueError: use_bce_loss或use_dice_loss为真且num_calsses > 2。
- ValueError: class_weight为list, 但长度不等于num_class。
- class_weight为str, 但class_weight.low()不等于dynamic。
- TypeError: class_weight不为None时,其类型不是list或str。
- """
- def __init__(self,
- num_classes=2,
- width=18,
- use_bce_loss=False,
- use_dice_loss=False,
- class_weight=None,
- ignore_index=255):
- self.init_params = locals()
- super(DeepLabv3p, self).__init__('segmenter')
- # dice_loss或bce_loss只适用两类分割中
- if num_classes > 2 and (use_bce_loss or use_dice_loss):
- raise ValueError(
- "dice loss and bce loss is only applicable to binary classfication"
- )
- if class_weight is not None:
- if isinstance(class_weight, list):
- if len(class_weight) != num_classes:
- raise ValueError(
- "Length of class_weight should be equal to number of classes"
- )
- elif isinstance(class_weight, str):
- if class_weight.lower() != 'dynamic':
- raise ValueError(
- "if class_weight is string, must be dynamic!")
- else:
- raise TypeError(
- 'Expect class_weight is a list or string but receive {}'.
- format(type(class_weight)))
- self.num_classes = num_classes
- self.width = width
- self.use_bce_loss = use_bce_loss
- self.use_dice_loss = use_dice_loss
- self.class_weight = class_weight
- self.ignore_index = ignore_index
- self.labels = None
- self.fixed_input_shape = None
- def build_net(self, mode='train'):
- model = paddlex.cv.nets.segmentation.HRNet(
- self.num_classes,
- width=self.width,
- mode=mode,
- use_bce_loss=self.use_bce_loss,
- use_dice_loss=self.use_dice_loss,
- class_weight=self.class_weight,
- ignore_index=self.ignore_index,
- fixed_input_shape=self.fixed_input_shape)
- inputs = model.generate_inputs()
- model_out = model.build_net(inputs)
- outputs = OrderedDict()
- if mode == 'train':
- self.optimizer.minimize(model_out)
- outputs['loss'] = model_out
- elif mode == 'eval':
- outputs['loss'] = model_out[0]
- outputs['pred'] = model_out[1]
- outputs['label'] = model_out[2]
- outputs['mask'] = model_out[3]
- else:
- outputs['pred'] = model_out[0]
- outputs['logit'] = model_out[1]
- return inputs, outputs
- def default_optimizer(self,
- learning_rate,
- num_epochs,
- num_steps_each_epoch,
- lr_decay_power=0.9):
- decay_step = num_epochs * num_steps_each_epoch
- lr_decay = fluid.layers.polynomial_decay(
- learning_rate,
- decay_step,
- end_learning_rate=0,
- power=lr_decay_power)
- optimizer = fluid.optimizer.Momentum(
- lr_decay,
- momentum=0.9,
- regularization=fluid.regularizer.L2Decay(
- regularization_coeff=5e-04))
- return optimizer
- def train(self,
- num_epochs,
- train_dataset,
- train_batch_size=2,
- eval_dataset=None,
- save_interval_epochs=1,
- log_interval_steps=2,
- save_dir='output',
- pretrain_weights='IMAGENET',
- optimizer=None,
- learning_rate=0.01,
- lr_decay_power=0.9,
- use_vdl=False,
- sensitivities_file=None,
- eval_metric_loss=0.05,
- early_stop=False,
- early_stop_patience=5,
- resume_checkpoint=None):
- """训练。
- Args:
- num_epochs (int): 训练迭代轮数。
- train_dataset (paddlex.datasets): 训练数据读取器。
- train_batch_size (int): 训练数据batch大小。同时作为验证数据batch大小。默认2。
- eval_dataset (paddlex.datasets): 评估数据读取器。
- save_interval_epochs (int): 模型保存间隔(单位:迭代轮数)。默认为1。
- log_interval_steps (int): 训练日志输出间隔(单位:迭代次数)。默认为2。
- save_dir (str): 模型保存路径。默认'output'。
- pretrain_weights (str): 若指定为路径时,则加载路径下预训练模型;若为字符串'IMAGENET',
- 则自动下载在IMAGENET图片数据上预训练的模型权重;若为None,则不使用预训练模型。默认为'IMAGENET'。
- optimizer (paddle.fluid.optimizer): 优化器。当改参数为None时,使用默认的优化器:使用
- fluid.optimizer.Momentum优化方法,polynomial的学习率衰减策略。
- learning_rate (float): 默认优化器的初始学习率。默认0.01。
- lr_decay_power (float): 默认优化器学习率多项式衰减系数。默认0.9。
- use_vdl (bool): 是否使用VisualDL进行可视化。默认False。
- sensitivities_file (str): 若指定为路径时,则加载路径下敏感度信息进行裁剪;若为字符串'DEFAULT',
- 则自动下载在ImageNet图片数据上获得的敏感度信息进行裁剪;若为None,则不进行裁剪。默认为None。
- eval_metric_loss (float): 可容忍的精度损失。默认为0.05。
- early_stop (bool): 是否使用提前终止训练策略。默认值为False。
- early_stop_patience (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内
- 连续下降或持平,则终止训练。默认值为5。
- resume_checkpoint (str): 恢复训练时指定上次训练保存的模型路径。若为None,则不会恢复训练。默认值为None。
- Raises:
- ValueError: 模型从inference model进行加载。
- """
- return super(HRNet, self).train(
- num_epochs, train_dataset, train_batch_size, eval_dataset,
- save_interval_epochs, log_interval_steps, save_dir,
- pretrain_weights, optimizer, learning_rate, lr_decay_power, use_vdl,
- sensitivities_file, eval_metric_loss, early_stop,
- early_stop_patience, resume_checkpoint)
|