| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225 |
- # coding: utf8
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import paddle
- import paddle.fluid as fluid
- import contextlib
- bn_regularizer = fluid.regularizer.L2DecayRegularizer(regularization_coeff=0.0)
- name_scope = ""
- @contextlib.contextmanager
- def scope(name):
- global name_scope
- bk = name_scope
- name_scope = name_scope + name + '/'
- yield
- name_scope = bk
- def max_pool(input, kernel, stride, padding):
- data = fluid.layers.pool2d(
- input,
- pool_size=kernel,
- pool_type='max',
- pool_stride=stride,
- pool_padding=padding)
- return data
- def avg_pool(input, kernel, stride, padding=0):
- data = fluid.layers.pool2d(
- input,
- pool_size=kernel,
- pool_type='avg',
- pool_stride=stride,
- pool_padding=padding)
- return data
- def group_norm(input, G, eps=1e-5, param_attr=None, bias_attr=None):
- N, C, H, W = input.shape
- if C % G != 0:
- for d in range(10):
- for t in [d, -d]:
- if G + t <= 0: continue
- if C % (G + t) == 0:
- G = G + t
- break
- if C % G == 0:
- break
- assert C % G == 0, "group can not divide channle"
- x = fluid.layers.group_norm(
- input,
- groups=G,
- param_attr=param_attr,
- bias_attr=bias_attr,
- name=name_scope + 'group_norm')
- return x
- def bn(*args,
- norm_type='bn',
- eps=1e-5,
- bn_momentum=0.99,
- group_norm=32,
- **kargs):
- if norm_type == 'bn':
- with scope('BatchNorm'):
- return fluid.layers.batch_norm(
- *args,
- epsilon=eps,
- momentum=bn_momentum,
- param_attr=fluid.ParamAttr(
- name=name_scope + 'gamma', regularizer=bn_regularizer),
- bias_attr=fluid.ParamAttr(
- name=name_scope + 'beta', regularizer=bn_regularizer),
- moving_mean_name=name_scope + 'moving_mean',
- moving_variance_name=name_scope + 'moving_variance',
- **kargs)
- elif norm_type == 'gn':
- with scope('GroupNorm'):
- return group_norm(
- args[0],
- group_norm,
- eps=eps,
- param_attr=fluid.ParamAttr(
- name=name_scope + 'gamma', regularizer=bn_regularizer),
- bias_attr=fluid.ParamAttr(
- name=name_scope + 'beta', regularizer=bn_regularizer))
- else:
- raise Exception("Unsupport norm type:" + norm_type)
- def bn_relu(data, norm_type='bn', eps=1e-5):
- return fluid.layers.relu(bn(data, norm_type=norm_type, eps=eps))
- def qsigmoid(data):
- return fluid.layers.relu6(data + 3) * 0.16667
- def relu(data):
- return fluid.layers.relu(data)
- def conv(*args, **kargs):
- kargs['param_attr'] = name_scope + 'weights'
- if 'bias_attr' in kargs and kargs['bias_attr']:
- kargs['bias_attr'] = fluid.ParamAttr(
- name=name_scope + 'biases',
- regularizer=None,
- initializer=fluid.initializer.ConstantInitializer(value=0.0))
- else:
- kargs['bias_attr'] = False
- return fluid.layers.conv2d(*args, **kargs)
- def deconv(*args, **kargs):
- kargs['param_attr'] = name_scope + 'weights'
- if 'bias_attr' in kargs and kargs['bias_attr']:
- kargs['bias_attr'] = name_scope + 'biases'
- else:
- kargs['bias_attr'] = False
- return fluid.layers.conv2d_transpose(*args, **kargs)
- def separate_conv(input,
- channel,
- stride,
- filter,
- dilation=1,
- act=None,
- eps=1e-5):
- param_attr = fluid.ParamAttr(
- name=name_scope + 'weights',
- regularizer=fluid.regularizer.L2DecayRegularizer(
- regularization_coeff=0.0),
- initializer=fluid.initializer.TruncatedNormal(
- loc=0.0, scale=0.33))
- with scope('depthwise'):
- input = conv(
- input,
- input.shape[1],
- filter,
- stride,
- groups=input.shape[1],
- padding=(filter // 2) * dilation,
- dilation=dilation,
- use_cudnn=False,
- param_attr=param_attr)
- input = bn(input, eps=eps)
- if act: input = act(input)
- param_attr = fluid.ParamAttr(
- name=name_scope + 'weights',
- regularizer=None,
- initializer=fluid.initializer.TruncatedNormal(
- loc=0.0, scale=0.06))
- with scope('pointwise'):
- input = conv(
- input, channel, 1, 1, groups=1, padding=0, param_attr=param_attr)
- input = bn(input, eps=eps)
- if act: input = act(input)
- return input
- def conv_bn_layer(input,
- filter_size,
- num_filters,
- stride,
- padding,
- channels=None,
- num_groups=1,
- if_act=True,
- name=None,
- use_cudnn=True):
- conv = fluid.layers.conv2d(
- input=input,
- num_filters=num_filters,
- filter_size=filter_size,
- stride=stride,
- padding=padding,
- groups=num_groups,
- act=None,
- use_cudnn=use_cudnn,
- param_attr=fluid.ParamAttr(name=name + '_weights'),
- bias_attr=False)
- bn_name = name + '_bn'
- bn = fluid.layers.batch_norm(
- input=conv,
- param_attr=fluid.ParamAttr(name=bn_name + "_scale"),
- bias_attr=fluid.ParamAttr(name=bn_name + "_offset"),
- moving_mean_name=bn_name + '_mean',
- moving_variance_name=bn_name + '_variance')
- if if_act:
- return fluid.layers.relu6(bn)
- else:
- return bn
- def sigmoid_to_softmax(input):
- """
- one channel to two channel
- """
- logit = fluid.layers.sigmoid(input)
- logit_back = 1 - logit
- logit = fluid.layers.concat([logit_back, logit], axis=1)
- return logit
|