| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159 |
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os.path as osp
- from ..utils import list_files
- from .utils import is_pic, get_encoding, check_list_txt
- from .datasetbase import DatasetBase
- class ClsDataset(DatasetBase):
- def __init__(self, dataset_id, path):
- super().__init__(dataset_id, path)
- def check_dataset(self, source_path):
- self.all_files = list_files(source_path)
- # 对分类数据集进行统计分析
- self.file_info = dict()
- self.label_info = dict()
- # 校验已切分的数据集
- if osp.exists(osp.join(source_path, 'train_list.txt')):
- return self.check_splited_dataset(source_path)
- for f in self.all_files:
- if not is_pic(f):
- continue
- items = osp.split(f)
- if len(items) == 2:
- if " " in items[0]:
- raise ValueError("类别-{}名称有误,分类数据集中类别名称不应包含空格".format(items[
- 0]))
- if items[0] not in self.label_info:
- self.label_info[items[0]] = list()
- self.label_info[items[0]].append(f)
- self.file_info[f] = items[0]
- if len(self.label_info) < 2:
- raise ValueError("分类数据集中至少需要包含两种图像类别")
- self.labels = sorted(self.label_info.keys())
- for label in self.labels:
- self.class_train_file_list[label] = list()
- self.class_val_file_list[label] = list()
- self.class_test_file_list[label] = list()
- # 将数据集分析信息dump到本地
- self.dump_statis_info()
- def check_splited_dataset(self, source_path):
- labels_txt = osp.join(source_path, "labels.txt")
- train_list_txt = osp.join(source_path, "train_list.txt")
- val_list_txt = osp.join(source_path, "val_list.txt")
- test_list_txt = osp.join(source_path, "test_list.txt")
- for txt_file in [labels_txt, train_list_txt, val_list_txt]:
- if not osp.exists(txt_file):
- raise Exception(
- "已切分的数据集下应该包含labels.txt, train_list.txt, val_list.txt文件")
- check_list_txt([train_list_txt, val_list_txt, test_list_txt])
- self.labels = open(
- labels_txt, 'r',
- encoding=get_encoding(labels_txt)).read().strip().split('\n')
- for txt_file in [train_list_txt, val_list_txt, test_list_txt]:
- if not osp.exists(txt_file):
- continue
- with open(txt_file, "r") as f:
- for line in f:
- items = line.strip().split()
- if not osp.exists(osp.join(source_path, items[0])):
- raise Exception("数据目录{}中不存在图片文件{}".format(
- osp.split(txt_file)[-1], items[0]))
- dir_name = osp.split(osp.split(items[0])[0])[-1]
- if dir_name != self.labels[int(items[1])]:
- raise Exception("labels.txt中label顺序不准确")
- img_file = osp.split(items[0])[-1]
- if not is_pic(img_file) or img_file.startswith('.'):
- raise ValueError("文件{}不是图片格式".format(img_file))
- self.file_info[items[0]] = self.labels[int(items[1])]
- if txt_file == train_list_txt:
- self.train_files.append(items[0])
- if self.labels[int(items[
- 1])] in self.class_train_file_list:
- self.class_train_file_list[self.labels[int(items[
- 1])]].append(items[0])
- else:
- self.class_train_file_list[self.labels[int(items[
- 1])]] = list()
- self.class_train_file_list[self.labels[int(items[
- 1])]].append(items[0])
- elif txt_file == val_list_txt:
- self.val_files.append(items[0])
- if self.labels[int(items[
- 1])] in self.class_val_file_list:
- self.class_val_file_list[self.labels[int(items[
- 1])]].append(items[0])
- else:
- self.class_val_file_list[self.labels[int(items[
- 1])]] = list()
- self.class_val_file_list[self.labels[int(items[
- 1])]].append(items[0])
- elif txt_file == test_list_txt:
- self.test_files.append(items[0])
- if self.labels[int(items[
- 1])] in self.class_test_file_list:
- self.class_test_file_list[self.labels[int(items[
- 1])]].append(items[0])
- else:
- self.class_test_file_list[self.labels[int(items[
- 1])]] = list()
- self.class_test_file_list[self.labels[int(items[
- 1])]].append(items[0])
- for img_file, label in self.file_info.items():
- if label not in self.label_info:
- self.label_info[label] = list()
- self.label_info[label].append(img_file)
- # 将数据集分析信息dump到本地
- self.dump_statis_info()
- def split(self, val_split, test_split):
- super().split(val_split, test_split)
- with open(
- osp.join(self.path, 'train_list.txt'), mode='w',
- encoding='utf-8') as f:
- for x in self.train_files:
- label = self.file_info[x]
- label_idx = self.labels.index(label)
- f.write('{} {}\n'.format(x, label_idx))
- with open(
- osp.join(self.path, 'val_list.txt'), mode='w',
- encoding='utf-8') as f:
- for x in self.val_files:
- label = self.file_info[x]
- label_idx = self.labels.index(label)
- f.write('{} {}\n'.format(x, label_idx))
- with open(
- osp.join(self.path, 'test_list.txt'), mode='w',
- encoding='utf-8') as f:
- for x in self.test_files:
- label = self.file_info[x]
- label_idx = self.labels.index(label)
- f.write('{} {}\n'.format(x, label_idx))
- with open(
- osp.join(self.path, 'labels.txt'), mode='w',
- encoding='utf-8') as f:
- for l in self.labels:
- f.write('{}\n'.format(l))
- self.dump_statis_info()
|