| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222 |
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os.path as osp
- import cv2
- from ..utils import list_files
- from .utils import is_pic, replace_ext, get_encoding, check_list_txt, read_seg_ann
- from .datasetbase import DatasetBase
- class SegDataset(DatasetBase):
- def __init__(self, dataset_id, path):
- super().__init__(dataset_id, path)
- def check_dataset(self, source_path):
- if not osp.isdir(osp.join(source_path, 'Annotations')):
- raise ValueError("标注文件应该放在{}目录下".format(
- osp.join(source_path, 'Annotations')))
- if not osp.isdir(osp.join(source_path, 'JPEGImages')):
- raise ValueError("图片文件应该放在{}目录下".format(
- osp.join(source_path, 'JPEGImages')))
- labels_txt = osp.join(source_path, 'labels.txt')
- if osp.exists(labels_txt):
- with open(labels_txt, encoding=get_encoding(labels_txt)) as fid:
- lines = fid.readlines()
- for line in lines:
- self.labels.append(line.strip())
- self.all_files = list_files(source_path)
- # 对语义分割数据集进行统计分析
- self.file_info = dict()
- self.label_info = dict()
- if osp.exists(osp.join(source_path, 'train_list.txt')):
- return self.check_splited_dataset(source_path)
- for f in self.all_files:
- if not is_pic(f):
- continue
- items = osp.split(f)
- if len(items) == 2 and items[0] == "JPEGImages":
- anno_name = replace_ext(items[1], "png")
- full_anno_path = osp.join(
- (osp.join(source_path, 'Annotations')), anno_name)
- if osp.exists(full_anno_path):
- self.file_info[f] = osp.join('Annotations', anno_name)
- # 解析PNG标注文件,获取类别信息
- labels, ann_img_shape = read_seg_ann(full_anno_path)
- img_shape = cv2.imread(osp.join(source_path, f)).shape
- if img_shape[0] != ann_img_shape[0] or img_shape[
- 1] != ann_img_shape[1]:
- raise ValueError("文件{}与标注图片尺寸不一致".format(items[1]))
- for i in labels:
- if str(i) not in self.label_info:
- self.label_info[str(i)] = list()
- self.label_info[str(i)].append(f)
- # 如果类标签的最大值大于类别数,统计相应的类别为零
- max_label = max([int(i) for i in self.label_info]) + 1
- for i in range(max_label):
- if str(i) not in self.label_info:
- self.label_info[str(i)] = list()
- if len(self.labels) == 0:
- self.labels = [int(i) for i in self.label_info]
- self.labels.sort()
- self.labels = [str(i) for i in self.labels]
- else:
- keys = list(self.label_info.keys())
- try:
- for key in keys:
- label = self.labels[int(key)]
- self.label_info[label] = self.label_info.pop(key)
- except:
- raise ValueError("标注信息与实际类别不一致")
- for label in self.labels:
- self.class_train_file_list[label] = list()
- self.class_val_file_list[label] = list()
- self.class_test_file_list[label] = list()
- # 将数据集分析信息dump到本地
- self.dump_statis_info()
- def check_splited_dataset(self, source_path):
- labels_txt = osp.join(source_path, "labels.txt")
- train_list_txt = osp.join(source_path, "train_list.txt")
- val_list_txt = osp.join(source_path, "val_list.txt")
- test_list_txt = osp.join(source_path, "test_list.txt")
- for txt_file in [train_list_txt, val_list_txt]:
- if not osp.exists(txt_file):
- raise Exception("已切分的数据集下应该包含train_list.txt, val_list.txt文件")
- check_list_txt([train_list_txt, val_list_txt, test_list_txt])
- if osp.exists(labels_txt):
- self.labels = open(
- labels_txt, 'r',
- encoding=get_encoding(labels_txt)).read().strip().split('\n')
- for txt_file in [train_list_txt, val_list_txt, test_list_txt]:
- if not osp.exists(txt_file):
- continue
- with open(txt_file, "r") as f:
- for line in f:
- items = line.strip().split()
- img_file, png_file = [items[0], items[1]]
- if not osp.isfile(osp.join(source_path, png_file)):
- raise ValueError("数据目录{}中不存在标注文件{}".format(
- osp.split(txt_file)[-1], png_file))
- if not osp.isfile(osp.join(source_path, img_file)):
- raise ValueError("数据目录{}中不存在图片文件{}".format(
- osp.split(txt_file)[-1], img_file))
- if not png_file.split('.')[-1] == 'png':
- raise ValueError("标注文件{}不是png文件".format(png_file))
- img_file_name = osp.split(img_file)[-1]
- if not is_pic(img_file_name) or img_file_name.startswith(
- '.'):
- raise ValueError("文件{}不是图片格式".format(img_file_name))
- self.file_info[img_file] = png_file
- if txt_file == train_list_txt:
- self.train_files.append(img_file)
- elif txt_file == val_list_txt:
- self.val_files.append(img_file)
- elif txt_file == test_list_txt:
- self.test_files.append(img_file)
- # 解析PNG标注文件
- labels, ann_img_shape = read_seg_ann(
- osp.join(source_path, png_file))
- img_shape = cv2.imread(osp.join(source_path,
- img_file)).shape
- if img_shape[0] != ann_img_shape[0] or img_shape[
- 1] != ann_img_shape[1]:
- raise ValueError("文件{}与标注图片尺寸不一致".format(
- img_file_name))
- for i in labels:
- if str(i) not in self.label_info:
- self.label_info[str(i)] = list()
- self.label_info[str(i)].append(img_file)
- # 如果类标签的最大值大于类别数,统计相应的类别为零
- max_label = max([int(i) for i in self.label_info]) + 1
- for i in range(max_label):
- if str(i) not in self.label_info:
- self.label_info[str(i)] = list()
- if len(self.labels) == 0:
- self.labels = [int(i) for i in self.label_info]
- self.labels.sort()
- self.labels = [str(i) for i in self.labels]
- else:
- keys = list(self.label_info.keys())
- try:
- for key in keys:
- label = self.labels[int(key)]
- self.label_info[label] = self.label_info.pop(key)
- except:
- raise ValueError("标注信息与实际类别不一致")
- self.train_set = set(self.train_files)
- self.val_set = set(self.val_files)
- self.test_set = set(self.test_files)
- for label, file_list in self.label_info.items():
- self.class_train_file_list[label] = list()
- self.class_val_file_list[label] = list()
- self.class_test_file_list[label] = list()
- for f in file_list:
- if f in self.test_set:
- self.class_test_file_list[label].append(f)
- if f in self.val_set:
- self.class_val_file_list[label].append(f)
- if f in self.train_set:
- self.class_train_file_list[label].append(f)
- # 将数据集分析信息dump到本地
- self.dump_statis_info()
- def split(self, val_split, test_split):
- super().split(val_split, test_split)
- with open(
- osp.join(self.path, 'train_list.txt'), mode='w',
- encoding='utf-8') as f:
- for x in self.train_files:
- label = self.file_info[x]
- f.write('{} {}\n'.format(x, label))
- with open(
- osp.join(self.path, 'val_list.txt'), mode='w',
- encoding='utf-8') as f:
- for x in self.val_files:
- label = self.file_info[x]
- f.write('{} {}\n'.format(x, label))
- with open(
- osp.join(self.path, 'test_list.txt'), mode='w',
- encoding='utf-8') as f:
- for x in self.test_files:
- label = self.file_info[x]
- f.write('{} {}\n'.format(x, label))
- if not osp.exists(osp.join(self.path, 'labels.txt')):
- with open(
- osp.join(self.path, 'labels.txt'), mode='w',
- encoding='utf-8') as f:
- max_label = max([int(i) for i in self.labels]) + 1
- for i in range(max_label):
- f.write('{}\n'.format(str(i)))
- self.dump_statis_info()
|