detection.py 1.9 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546
  1. # copytrue (c) 2020 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import os
  15. import os.path as osp
  16. def prune(best_model_path, dataset_path, sensitivities_path, batch_size):
  17. import paddlex as pdx
  18. model = pdx.load_model(best_model_path)
  19. # build coco dataset
  20. if osp.exists(osp.join(dataset_path, 'JPEGImages')) and \
  21. osp.exists(osp.join(dataset_path, 'train.json')) and \
  22. osp.exists(osp.join(dataset_path, 'val.json')):
  23. data_dir = osp.join(dataset_path, 'JPEGImages')
  24. eval_ann_file = osp.join(dataset_path, 'val.json')
  25. eval_dataset = pdx.datasets.CocoDetection(
  26. data_dir=data_dir,
  27. ann_file=eval_ann_file,
  28. transforms=model.eval_transforms)
  29. # build voc
  30. elif osp.exists(osp.join(dataset_path, 'train_list.txt')) and \
  31. osp.exists(osp.join(dataset_path, 'val_list.txt')) and \
  32. osp.exists(osp.join(dataset_path, 'labels.txt')):
  33. eval_file_list = osp.join(dataset_path, 'val_list.txt')
  34. label_list = osp.join(dataset_path, 'labels.txt')
  35. eval_dataset = pdx.datasets.VOCDetection(
  36. data_dir=dataset_path,
  37. file_list=eval_file_list,
  38. label_list=label_list,
  39. transforms=model.eval_transforms)
  40. pdx.slim.cal_params_sensitivities(model, sensitivities_path, eval_dataset,
  41. batch_size)