| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171 |
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os.path as osp
- def build_transforms(params):
- from paddlex.seg import transforms
- seg_list = []
- min_value = max(params.image_shape) * 4 // 5
- max_value = max(params.image_shape) * 6 // 5
- seg_list.extend([
- transforms.ResizeRangeScaling(
- min_value=min_value, max_value=max_value),
- transforms.RandomBlur(prob=params.blur_prob)
- ])
- if params.rotate:
- seg_list.append(
- transforms.RandomRotate(rotate_range=params.max_rotation))
- if params.scale_aspect:
- seg_list.append(
- transforms.RandomScaleAspect(
- min_scale=params.min_ratio, aspect_ratio=params.aspect_ratio))
- seg_list.extend([
- transforms.RandomDistort(
- brightness_range=params.brightness_range,
- brightness_prob=params.brightness_prob,
- contrast_range=params.contrast_range,
- contrast_prob=params.contrast_prob,
- saturation_range=params.saturation_range,
- saturation_prob=params.saturation_prob,
- hue_range=params.hue_range,
- hue_prob=params.hue_prob),
- transforms.RandomVerticalFlip(prob=params.vertical_flip_prob),
- transforms.RandomHorizontalFlip(prob=params.horizontal_flip_prob),
- transforms.RandomPaddingCrop(crop_size=max(params.image_shape)),
- transforms.Normalize(
- mean=params.image_mean, std=params.image_std)
- ])
- train_transforms = transforms.Compose(seg_list)
- eval_transforms = transforms.Compose([
- transforms.ResizeByLong(long_size=max(params.image_shape)),
- transforms.Padding(target_size=max(params.image_shape)),
- transforms.Normalize(
- mean=params.image_mean, std=params.image_std)
- ])
- return train_transforms, eval_transforms
- def build_datasets(dataset_path, train_transforms, eval_transforms):
- import paddlex as pdx
- train_file_list = osp.join(dataset_path, 'train_list.txt')
- eval_file_list = osp.join(dataset_path, 'val_list.txt')
- label_list = osp.join(dataset_path, 'labels.txt')
- train_dataset = pdx.datasets.SegDataset(
- data_dir=dataset_path,
- file_list=train_file_list,
- label_list=label_list,
- transforms=train_transforms,
- shuffle=True)
- eval_dataset = pdx.datasets.SegDataset(
- data_dir=dataset_path,
- file_list=eval_file_list,
- label_list=label_list,
- transforms=eval_transforms)
- return train_dataset, eval_dataset
- def build_optimizer(step_each_epoch, params):
- import paddle.fluid as fluid
- if params.lr_policy == 'Piecewise':
- gamma = 0.1
- bd = [step_each_epoch * e for e in params.lr_decay_epochs]
- lr = [params.learning_rate * (gamma**i) for i in range(len(bd) + 1)]
- decayed_lr = fluid.layers.piecewise_decay(boundaries=bd, values=lr)
- elif params.lr_policy == 'Polynomial':
- decay_step = params.num_epochs * step_each_epoch
- decayed_lr = fluid.layers.polynomial_decay(
- params.learning_rate, decay_step, end_learning_rate=0, power=0.9)
- elif params.lr_policy == 'Cosine':
- decayed_lr = fluid.layers.cosine_decay(
- params.learning_rate, step_each_epoch, params.num_epochs)
- else:
- raise Exception(
- 'lr_policy only support Polynomial or Piecewise, but you set {}'.
- format(params.lr_policy))
- if params.optimizer.lower() == 'sgd':
- momentum = 0.9
- regularize_coef = 1e-4
- optimizer = fluid.optimizer.Momentum(
- learning_rate=decayed_lr,
- momentum=momentum,
- regularization=fluid.regularizer.L2Decay(
- regularization_coeff=regularize_coef), )
- elif params.optimizer.lower() == 'adam':
- momentum = 0.9
- momentum2 = 0.999
- regularize_coef = 1e-4
- optimizer = fluid.optimizer.Adam(
- learning_rate=decayed_lr,
- beta1=momentum,
- beta2=momentum2,
- regularization=fluid.regularizer.L2Decay(
- regularization_coeff=regularize_coef), )
- return optimizer
- def train(task_path, dataset_path, params):
- import paddlex as pdx
- pdx.log_level = 3
- train_transforms, eval_transforms = build_transforms(params)
- train_dataset, eval_dataset = build_datasets(
- dataset_path=dataset_path,
- train_transforms=train_transforms,
- eval_transforms=eval_transforms)
- step_each_epoch = train_dataset.num_samples // params.batch_size
- save_interval_epochs = params.save_interval_epochs
- save_dir = osp.join(task_path, 'output')
- pretrain_weights = params.pretrain_weights
- optimizer = build_optimizer(step_each_epoch, params)
- segmenter = getattr(pdx.cv.models, 'HRNet'
- if params.model.startswith('HRNet') else params.model)
- use_dice_loss, use_bce_loss = params.loss_type
- backbone = params.backbone
- sensitivities_path = params.sensitivities_path
- eval_metric_loss = params.eval_metric_loss
- if eval_metric_loss is None:
- eval_metric_loss = 0.05
- if params.model in ['UNet', 'HRNet_W18', 'FastSCNN']:
- model = segmenter(
- num_classes=len(train_dataset.labels),
- use_bce_loss=use_bce_loss,
- use_dice_loss=use_dice_loss)
- elif params.model == 'DeepLabv3p':
- model = segmenter(
- num_classes=len(train_dataset.labels),
- backbone=backbone,
- use_bce_loss=use_bce_loss,
- use_dice_loss=use_dice_loss)
- if backbone == 'MobileNetV3_large_x1_0_ssld':
- model.pooling_crop_size = params.image_shape
- model.train(
- num_epochs=params.num_epochs,
- train_dataset=train_dataset,
- train_batch_size=params.batch_size,
- eval_dataset=eval_dataset,
- save_interval_epochs=save_interval_epochs,
- log_interval_steps=2,
- save_dir=save_dir,
- pretrain_weights=pretrain_weights,
- optimizer=optimizer,
- use_vdl=True,
- sensitivities_file=sensitivities_path,
- eval_metric_loss=eval_metric_loss,
- resume_checkpoint=params.resume_checkpoint)
|