| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from abc import abstractmethod
- from copy import deepcopy
- from .inference import create_predictor, PaddlePredictorOption
- from .modules import (
- build_dataset_checker,
- build_trainer,
- build_evaluater,
- build_exportor,
- )
- # TODO(gaotingquan): support _ModelBasedConfig
- def create_model(model_name, model_dir=None, *args, **kwargs):
- return _ModelBasedInference(
- model_name=model_name, model_dir=model_dir, *args, **kwargs
- )
- class _BaseModel:
- def check_dataset(self, *args, **kwargs):
- raise Exception("check_dataset is not supported!")
- def train(self, *args, **kwargs):
- raise Exception("train is not supported!")
- def evaluate(self, *args, **kwargs):
- raise Exception("evaluate is not supported!")
- def export(self, *args, **kwargs):
- raise Exception("export is not supported!")
- def predict(self, *args, **kwargs):
- raise Exception("predict is not supported!")
- def set_predict(self, *args, **kwargs):
- raise Exception("set_predict is not supported!")
- def __call__(self, *args, **kwargs):
- yield from self.predict(*args, **kwargs)
- class _ModelBasedInference(_BaseModel):
- def __init__(self, *args, **kwargs):
- self._predictor = create_predictor(*args, **kwargs)
- def predict(self, *args, **kwargs):
- yield from self._predictor(*args, **kwargs)
- def set_predictor(self, **kwargs):
- self._predictor.set_predictor(**kwargs)
- def __getattr__(self, name):
- if hasattr(self._predictor, name):
- return getattr(self._predictor, name)
- raise AttributeError(
- f"'{self.__class__.__name__}' object has no attribute '{name}'"
- )
- class _ModelBasedConfig(_BaseModel):
- def __init__(self, config=None, *args, **kwargs):
- super().__init__()
- self._config = config
- self._model_name = config.Global.model
- def _build_predictor(self):
- predict_kwargs = deepcopy(self._config.Predict)
- model_dir = predict_kwargs.pop("model_dir", None)
- device = self._config.Global.get("device")
- kernel_option = predict_kwargs.pop("kernel_option", {})
- kernel_option.update({"device": device})
- pp_option = PaddlePredictorOption(self._model_name, **kernel_option)
- predictor = create_predictor(self._model_name, model_dir, pp_option=pp_option)
- assert "input" in predict_kwargs
- return predict_kwargs, predictor
- def check_dataset(self):
- dataset_checker = build_dataset_checker(self._config)
- return dataset_checker.check()
- def train(self):
- trainer = build_trainer(self._config)
- trainer.train()
- def evaluate(self):
- evaluator = build_evaluater(self._config)
- return evaluator.evaluate()
- def export(self):
- exportor = build_exportor(self._config)
- return exportor.export()
- def predict(self):
- predict_kwargs, predictor = self._build_predictor()
- yield from predictor(**predict_kwargs)
|