| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758 |
- # 环境变量配置,用于控制是否使用GPU
- # 说明文档:https://paddlex.readthedocs.io/zh_CN/develop/appendix/parameters.html#gpu
- import os
- os.environ['CUDA_VISIBLE_DEVICES'] = '0'
- from paddlex.det import transforms
- import paddlex as pdx
- # 下载和解压昆虫检测数据集
- insect_dataset = 'https://bj.bcebos.com/paddlex/datasets/insect_det.tar.gz'
- pdx.utils.download_and_decompress(insect_dataset, path='./')
- # 定义训练和验证时的transforms
- # API说明 https://paddlex.readthedocs.io/zh_CN/develop/apis/transforms/det_transforms.html
- train_transforms = transforms.Compose([
- transforms.MixupImage(mixup_epoch=250), transforms.RandomDistort(),
- transforms.RandomExpand(), transforms.RandomCrop(), transforms.Resize(
- target_size=608, interp='RANDOM'), transforms.RandomHorizontalFlip(),
- transforms.Normalize()
- ])
- eval_transforms = transforms.Compose([
- transforms.Resize(
- target_size=608, interp='CUBIC'), transforms.Normalize()
- ])
- # 定义训练和验证所用的数据集
- # API说明:https://paddlex.readthedocs.io/zh_CN/develop/apis/datasets.html#paddlex-datasets-vocdetection
- train_dataset = pdx.datasets.VOCDetection(
- data_dir='insect_det',
- file_list='insect_det/train_list.txt',
- label_list='insect_det/labels.txt',
- transforms=train_transforms,
- shuffle=True)
- eval_dataset = pdx.datasets.VOCDetection(
- data_dir='insect_det',
- file_list='insect_det/val_list.txt',
- label_list='insect_det/labels.txt',
- transforms=eval_transforms)
- # 初始化模型,并进行训练
- # 可使用VisualDL查看训练指标,参考https://paddlex.readthedocs.io/zh_CN/develop/train/visualdl.html
- num_classes = len(train_dataset.labels)
- # API说明: https://paddlex.readthedocs.io/zh_CN/develop/apis/models/detection.html#paddlex-det-yolov3
- model = pdx.det.YOLOv3(num_classes=num_classes, backbone='MobileNetV3_large')
- # API说明: https://paddlex.readthedocs.io/zh_CN/develop/apis/models/detection.html#id1
- # 各参数介绍与调整说明:https://paddlex.readthedocs.io/zh_CN/develop/appendix/parameters.html
- model.train(
- num_epochs=270,
- train_dataset=train_dataset,
- train_batch_size=8,
- eval_dataset=eval_dataset,
- learning_rate=0.000125,
- lr_decay_epochs=[210, 240],
- save_dir='output/yolov3_mobilenetv3',
- use_vdl=True)
|