evaluator.py 2.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import tarfile
  15. from pathlib import Path
  16. from ..base import BaseEvaluator
  17. from .model_list import MODELS
  18. class TSADEvaluator(BaseEvaluator):
  19. """TS Anomaly Detection Model Evaluator"""
  20. entities = MODELS
  21. def update_config(self):
  22. """update evalution config"""
  23. self.pdx_config.update_dataset(self.global_config.dataset_dir, "TSADDataset")
  24. self.pdx_config.update_weights(self.eval_config.weight_path)
  25. def uncompress_tar_file(self):
  26. """unpackage the tar file containing training outputs and update weight path"""
  27. if tarfile.is_tarfile(self.eval_config.weight_path):
  28. dest_path = Path(self.eval_config.weight_path).parent
  29. with tarfile.open(self.eval_config.weight_path, "r") as tar:
  30. tar.extractall(path=dest_path)
  31. self.eval_config.weight_path = dest_path.joinpath(
  32. "best_accuracy.pdparams/best_model/model.pdparams"
  33. )
  34. def evaluate(self):
  35. """firstly, update evaluation config, then evaluate model, finally return the evaluation result"""
  36. self.uncompress_tar_file()
  37. return super().evaluate()
  38. def get_eval_kwargs(self) -> dict:
  39. """get key-value arguments of model evalution function
  40. Returns:
  41. dict: the arguments of evaluation function.
  42. """
  43. return {
  44. "weight_path": self.eval_config.weight_path,
  45. "device": self.get_device(using_device_number=1),
  46. }