predictor.py 3.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import os
  15. import numpy as np
  16. from ....utils import logging
  17. from ...base.predictor.transforms import ts_common
  18. from ...base import BasePredictor
  19. from .keys import TSFCKeys as K
  20. from . import transforms as T
  21. from .utils import InnerConfig
  22. from ..model_list import MODELS
  23. class TSFCPredictor(BasePredictor):
  24. """SegPredictor"""
  25. entities = MODELS
  26. def __init__(
  27. self,
  28. model_name,
  29. model_dir,
  30. kernel_option,
  31. output,
  32. pre_transforms=None,
  33. post_transforms=None,
  34. has_prob_map=False,
  35. ):
  36. super().__init__(
  37. model_name=model_name,
  38. model_dir=model_dir,
  39. kernel_option=kernel_option,
  40. output=output,
  41. pre_transforms=pre_transforms,
  42. post_transforms=post_transforms,
  43. )
  44. self.has_prob_map = has_prob_map
  45. def load_other_src(self):
  46. """load the inner config file"""
  47. infer_cfg_file_path = os.path.join(self.model_dir, "inference.yml")
  48. if not os.path.exists(infer_cfg_file_path):
  49. raise FileNotFoundError(f"Cannot find config file: {infer_cfg_file_path}")
  50. return InnerConfig(infer_cfg_file_path, self.model_dir)
  51. @classmethod
  52. def get_input_keys(cls):
  53. """get input keys"""
  54. return [[K.TS], [K.TS_PATH]]
  55. @classmethod
  56. def get_output_keys(cls):
  57. """get output keys"""
  58. return [K.PRED]
  59. def _run(self, batch_input):
  60. """run"""
  61. n = len(batch_input[0][K.TS])
  62. input_ = [
  63. np.stack([lst[i] for lst in [data[K.TS] for data in batch_input]], axis=0)
  64. for i in range(n)
  65. ]
  66. outputs = self._predictor.predict(input_)
  67. batch_output = outputs[0]
  68. # In-place update
  69. for dict_, output in zip(batch_input, batch_output):
  70. dict_[K.PRED] = output
  71. return batch_input
  72. def _get_pre_transforms_from_config(self):
  73. """_get_pre_transforms_from_config"""
  74. # If `K.TS` (the decoded image) is found, return a default list of
  75. # transformation operators for the input (if possible).
  76. # If `K.TS` (the decoded image) is not found, `K.IM_PATH` (the image
  77. # path) must be contained in the input. In this case, we infer
  78. # transformation operators from the config file.
  79. # In cases where the input contains both `K.TS` and `K.IM_PATH`,
  80. # `K.TS` takes precedence over `K.IM_PATH`.
  81. logging.info(
  82. f"Transformation operators for data preprocessing will be inferred from config file."
  83. )
  84. pre_transforms = self.other_src.pre_transforms
  85. pre_transforms.insert(0, ts_common.ReadTS())
  86. return pre_transforms
  87. def _get_post_transforms_from_config(self):
  88. """_get_post_transforms_from_config"""
  89. post_transforms = self.other_src.post_transforms
  90. post_transforms.append(T.SaveTSResults(self.output))
  91. return post_transforms