| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from ...utils import logging
- from ..base import BaseTrainer
- from .model_list import MODELS
- class DetTrainer(BaseTrainer):
- """Object Detection Model Trainer"""
- entities = MODELS
- def _update_dataset(self):
- """update dataset settings"""
- metric = self.pdx_config.metric if "metric" in self.pdx_config else "COCO"
- data_fields = (
- self.pdx_config.TrainDataset["data_fields"]
- if "data_fields" in self.pdx_config.TrainDataset
- else None
- )
- self.pdx_config.update_dataset(
- self.global_config.dataset_dir,
- "COCODetDataset",
- data_fields=data_fields,
- metric=metric,
- )
- def update_config(self):
- """update training config"""
- if self.train_config.log_interval:
- self.pdx_config.update_log_interval(self.train_config.log_interval)
- if self.train_config.eval_interval:
- self.pdx_config.update_eval_interval(self.train_config.eval_interval)
- self._update_dataset()
- if self.train_config.num_classes is not None:
- self.pdx_config.update_num_class(self.train_config.num_classes)
- if (
- self.train_config.pretrain_weight_path
- and self.train_config.pretrain_weight_path != ""
- ):
- self.pdx_config.update_pretrained_weights(
- self.train_config.pretrain_weight_path
- )
- if self.train_config.batch_size is not None:
- self.pdx_config.update_batch_size(self.train_config.batch_size)
- if self.train_config.learning_rate is not None:
- self.pdx_config.update_learning_rate(self.train_config.learning_rate)
- if self.train_config.epochs_iters is not None:
- self.pdx_config.update_epochs(self.train_config.epochs_iters)
- epochs_iters = self.train_config.epochs_iters
- else:
- epochs_iters = self.pdx_config.get_epochs_iters()
- if self.train_config.warmup_steps is not None:
- self.pdx_config.update_warmup_steps(self.train_config.warmup_steps)
- if self.global_config.output is not None:
- self.pdx_config.update_save_dir(self.global_config.output)
- if "PicoDet" in self.global_config.model:
- assigner_epochs = max(int(epochs_iters / 10), 1)
- try:
- self.pdx_config.update_static_assigner_epochs(assigner_epochs)
- except Exception:
- logging.info(
- f"The model({self.global_config.model}) don't support to update_static_assigner_epochs!"
- )
- def get_train_kwargs(self) -> dict:
- """get key-value arguments of model training function
- Returns:
- dict: the arguments of training function.
- """
- train_args = {"device": self.get_device()}
- if (
- self.train_config.resume_path is not None
- and self.train_config.resume_path != ""
- ):
- train_args["resume_path"] = self.train_config.resume_path
- train_args["dy2st"] = self.train_config.get("dy2st", False)
- # amp support 'O1', 'O2', 'OFF'
- train_args["amp"] = self.train_config.get("amp", "OFF")
- return train_args
|