| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import numbers
- import numpy as np
- from ....utils.deps import class_requires_deps, is_dep_available
- from ...common.reader.det_3d_reader import Sample
- from ...utils.benchmark import benchmark
- if is_dep_available("opencv-contrib-python"):
- import cv2
- @benchmark.timeit
- class LoadPointsFromFile:
- """Load points from a file and process them according to specified parameters."""
- def __init__(
- self, load_dim=6, use_dim=[0, 1, 2], shift_height=False, use_color=False
- ):
- """Initializes the LoadPointsFromFile object.
- Args:
- load_dim (int): Dimensions loaded in points.
- use_dim (list or int): Dimensions used in points. If int, will use a range from 0 to use_dim (exclusive).
- shift_height (bool): Whether to shift height values.
- use_color (bool): Whether to include color attributes in the loaded points.
- """
- self.shift_height = shift_height
- self.use_color = use_color
- if isinstance(use_dim, int):
- use_dim = list(range(use_dim))
- assert (
- max(use_dim) < load_dim
- ), f"Expect all used dimensions < {load_dim}, got {use_dim}"
- self.load_dim = load_dim
- self.use_dim = use_dim
- def _load_points(self, pts_filename):
- """Private function to load point clouds data from a file.
- Args:
- pts_filename (str): Path to the point cloud file.
- Returns:
- numpy.ndarray: Loaded point cloud data.
- """
- points = np.fromfile(pts_filename, dtype=np.float32)
- return points
- def __call__(self, results):
- """Call function to load points data from file and process it.
- Args:
- results (dict): Dictionary containing the 'pts_filename' key with the path to the point cloud file.
- Returns:
- dict: Updated results dictionary with 'points' key added.
- """
- pts_filename = results["pts_filename"]
- points = self._load_points(pts_filename)
- points = points.reshape(-1, self.load_dim)
- points = points[:, self.use_dim]
- attribute_dims = None
- if self.shift_height:
- floor_height = np.percentile(points[:, 2], 0.99)
- height = points[:, 2] - floor_height
- points = np.concatenate(
- [points[:, :3], np.expand_dims(height, 1), points[:, 3:]], 1
- )
- attribute_dims = dict(height=3)
- if self.use_color:
- assert len(self.use_dim) >= 6
- if attribute_dims is None:
- attribute_dims = dict()
- attribute_dims.update(
- dict(
- color=[
- points.shape[1] - 3,
- points.shape[1] - 2,
- points.shape[1] - 1,
- ]
- )
- )
- results["points"] = points
- return results
- @benchmark.timeit
- class LoadPointsFromMultiSweeps(object):
- """Load points from multiple sweeps.This is usually used for nuScenes dataset to utilize previous sweeps."""
- def __init__(
- self,
- sweeps_num=10,
- load_dim=5,
- use_dim=[0, 1, 2, 4],
- pad_empty_sweeps=False,
- remove_close=False,
- test_mode=False,
- point_cloud_angle_range=None,
- ):
- """Initializes the LoadPointsFromMultiSweeps object
- Args:
- sweeps_num (int): Number of sweeps. Defaults to 10.
- load_dim (int): Dimension number of the loaded points. Defaults to 5.
- use_dim (list[int]): Which dimension to use. Defaults to [0, 1, 2, 4].
- for more details. Defaults to dict(backend='disk').
- pad_empty_sweeps (bool): Whether to repeat keyframe when
- sweeps is empty. Defaults to False.
- remove_close (bool): Whether to remove close points.
- Defaults to False.
- test_mode (bool): If test_model=True used for testing, it will not
- randomly sample sweeps but select the nearest N frames.
- Defaults to False.
- """
- self.load_dim = load_dim
- self.sweeps_num = sweeps_num
- self.use_dim = use_dim
- self.pad_empty_sweeps = pad_empty_sweeps
- self.remove_close = remove_close
- self.test_mode = test_mode
- if point_cloud_angle_range is not None:
- self.filter_by_angle = True
- self.point_cloud_angle_range = point_cloud_angle_range
- print(point_cloud_angle_range)
- else:
- self.filter_by_angle = False
- # self.point_cloud_angle_range = point_cloud_angle_range
- def _load_points(self, pts_filename):
- """Private function to load point clouds data.
- Args:
- pts_filename (str): Filename of point clouds data.
- Returns:
- np.ndarray: An array containing point clouds data.
- """
- points = np.fromfile(pts_filename, dtype=np.float32)
- return points
- def _remove_close(self, points, radius=1.0):
- """Removes point too close within a certain radius from origin.
- Args:
- points (np.ndarray): Sweep points.
- radius (float): Radius below which points are removed.
- Defaults to 1.0.
- Returns:
- np.ndarray: Points after removing.
- """
- if isinstance(points, np.ndarray):
- points_numpy = points
- else:
- raise NotImplementedError
- x_filt = np.abs(points_numpy[:, 0]) < radius
- y_filt = np.abs(points_numpy[:, 1]) < radius
- not_close = np.logical_not(np.logical_and(x_filt, y_filt))
- return points[not_close]
- def filter_point_by_angle(self, points):
- """
- Filters points based on their angle in relation to the origin.
- Args:
- points (np.ndarray): An array of points with shape (N, 2), where each row
- is a point in 2D space.
- Returns:
- np.ndarray: A filtered array of points that fall within the specified
- angle range.
- """
- if isinstance(points, np.ndarray):
- points_numpy = points
- else:
- raise NotImplementedError
- pts_phi = (
- np.arctan(points_numpy[:, 0] / points_numpy[:, 1])
- + (points_numpy[:, 1] < 0) * np.pi
- + np.pi * 2
- ) % (np.pi * 2)
- pts_phi[pts_phi > np.pi] -= np.pi * 2
- pts_phi = pts_phi / np.pi * 180
- assert np.all(-180 <= pts_phi) and np.all(pts_phi <= 180)
- filt = np.logical_and(
- pts_phi >= self.point_cloud_angle_range[0],
- pts_phi <= self.point_cloud_angle_range[1],
- )
- return points[filt]
- def __call__(self, results):
- """Call function to load multi-sweep point clouds from files.
- Args:
- results (dict): Result dict containing multi-sweep point cloud \
- filenames.
- Returns:
- dict: The result dict containing the multi-sweep points data. \
- Added key and value are described below.
- - points (np.ndarray): Multi-sweep point cloud arrays.
- """
- points = results["points"]
- points[:, 4] = 0
- sweep_points_list = [points]
- ts = results["timestamp"]
- if self.pad_empty_sweeps and len(results["sweeps"]) == 0:
- for i in range(self.sweeps_num):
- if self.remove_close:
- sweep_points_list.append(self._remove_close(points))
- else:
- sweep_points_list.append(points)
- else:
- if len(results["sweeps"]) <= self.sweeps_num:
- choices = np.arange(len(results["sweeps"]))
- elif self.test_mode:
- choices = np.arange(self.sweeps_num)
- else:
- choices = np.random.choice(
- len(results["sweeps"]), self.sweeps_num, replace=False
- )
- for idx in choices:
- sweep = results["sweeps"][idx]
- points_sweep = self._load_points(sweep["data_path"])
- points_sweep = np.copy(points_sweep).reshape(-1, self.load_dim)
- if self.remove_close:
- points_sweep = self._remove_close(points_sweep)
- sweep_ts = sweep["timestamp"] / 1e6
- points_sweep[:, :3] = (
- points_sweep[:, :3] @ sweep["sensor2lidar_rotation"].T
- )
- points_sweep[:, :3] += sweep["sensor2lidar_translation"]
- points_sweep[:, 4] = ts - sweep_ts
- # points_sweep = points.new_point(points_sweep)
- sweep_points_list.append(points_sweep)
- points = np.concatenate(sweep_points_list, axis=0)
- if self.filter_by_angle:
- points = self.filter_point_by_angle(points)
- points = points[:, self.use_dim]
- results["points"] = points
- return results
- @benchmark.timeit
- @class_requires_deps("opencv-contrib-python")
- class LoadMultiViewImageFromFiles:
- """Load multi-view images from files."""
- def __init__(
- self,
- to_float32=False,
- project_pts_to_img_depth=False,
- cam_depth_range=[4.0, 45.0, 1.0],
- constant_std=0.5,
- imread_flag=-1,
- ):
- """
- Initializes the LoadMultiViewImageFromFiles object.
- Args:
- to_float32 (bool): Whether to convert the loaded images to float32. Default: False.
- project_pts_to_img_depth (bool): Whether to project points to image depth. Default: False.
- cam_depth_range (list): Camera depth range in the format [min, max, focal]. Default: [4.0, 45.0, 1.0].
- constant_std (float): Constant standard deviation for normalization. Default: 0.5.
- imread_flag (int): Flag determining the color type of the loaded image.
- - -1: cv2.IMREAD_UNCHANGED
- - 0: cv2.IMREAD_GRAYSCALE
- - 1: cv2.IMREAD_COLOR
- Default: -1.
- """
- self.to_float32 = to_float32
- self.project_pts_to_img_depth = project_pts_to_img_depth
- self.cam_depth_range = cam_depth_range
- self.constant_std = constant_std
- self.imread_flag = imread_flag
- def __call__(self, sample):
- """
- Call method to load multi-view image from files and update the sample dictionary.
- Args:
- sample (dict): Dictionary containing the image filename key.
- Returns:
- dict: Updated sample dictionary with loaded images and additional information.
- """
- filename = sample["img_filename"]
- img = np.stack(
- [cv2.imread(name, self.imread_flag) for name in filename], axis=-1
- )
- if self.to_float32:
- img = img.astype(np.float32)
- sample["filename"] = filename
- sample["img"] = [img[..., i] for i in range(img.shape[-1])]
- sample["img_shape"] = img.shape
- sample["ori_shape"] = img.shape
- sample["pad_shape"] = img.shape
- # sample['scale_factor'] = 1.0
- num_channels = 1 if len(img.shape) < 3 else img.shape[2]
- sample["img_norm_cfg"] = dict(
- mean=np.zeros(num_channels, dtype=np.float32),
- std=np.ones(num_channels, dtype=np.float32),
- to_rgb=False,
- )
- sample["img_fields"] = ["img"]
- return sample
- @benchmark.timeit
- @class_requires_deps("opencv-contrib-python")
- class ResizeImage:
- """Resize images & bbox & mask."""
- def __init__(
- self,
- img_scale=None,
- multiscale_mode="range",
- ratio_range=None,
- keep_ratio=True,
- bbox_clip_border=True,
- backend="cv2",
- override=False,
- ):
- """Initializes the ResizeImage object.
- Args:
- img_scale (list or int, optional): The scale of the image. If a single integer is provided, it will be converted to a list. Defaults to None.
- multiscale_mode (str): The mode for multiscale resizing. Can be "value" or "range". Defaults to "range".
- ratio_range (list, optional): The range of image aspect ratios. Only used when img_scale is a single value. Defaults to None.
- keep_ratio (bool): Whether to keep the aspect ratio when resizing. Defaults to True.
- bbox_clip_border (bool): Whether to clip the bounding box to the image border. Defaults to True.
- backend (str): The backend to use for image resizing. Can be "cv2". Defaults to "cv2".
- override (bool): Whether to override certain resize parameters. Note: This option needs refactoring. Defaults to False.
- """
- if img_scale is None:
- self.img_scale = None
- else:
- if isinstance(img_scale, list):
- self.img_scale = img_scale
- else:
- self.img_scale = [img_scale]
- if ratio_range is not None:
- # mode 1: given a scale and a range of image ratio
- assert len(self.img_scale) == 1
- else:
- # mode 2: given multiple scales or a range of scales
- assert multiscale_mode in ["value", "range"]
- self.backend = backend
- self.multiscale_mode = multiscale_mode
- self.ratio_range = ratio_range
- self.keep_ratio = keep_ratio
- # TODO: refactor the override option in Resize
- self.override = override
- self.bbox_clip_border = bbox_clip_border
- @staticmethod
- def random_select(img_scales):
- """Randomly select an img_scale from the given list of candidates.
- Args:
- img_scales (list): A list of image scales to choose from.
- Returns:
- tuple: A tuple containing the selected image scale and its index in the list.
- """
- scale_idx = np.random.randint(len(img_scales))
- img_scale = img_scales[scale_idx]
- return img_scale, scale_idx
- @staticmethod
- def random_sample(img_scales):
- """
- Randomly sample an img_scale when `multiscale_mode` is set to 'range'.
- Args:
- img_scales (list of tuples): A list of tuples, where each tuple contains
- the minimum and maximum scale dimensions for an image.
- Returns:
- tuple: A tuple containing the randomly sampled img_scale (long_edge, short_edge)
- and None (to maintain function signature compatibility).
- """
- img_scale_long = [max(s) for s in img_scales]
- img_scale_short = [min(s) for s in img_scales]
- long_edge = np.random.randint(min(img_scale_long), max(img_scale_long) + 1)
- short_edge = np.random.randint(min(img_scale_short), max(img_scale_short) + 1)
- img_scale = (long_edge, short_edge)
- return img_scale, None
- @staticmethod
- def random_sample_ratio(img_scale, ratio_range):
- """
- Randomly sample an img_scale based on the specified ratio_range.
- Args:
- img_scale (list): A list of two integers representing the minimum and maximum
- scale for the image.
- ratio_range (tuple): A tuple of two floats representing the minimum and maximum
- ratio for sampling the img_scale.
- Returns:
- tuple: A tuple containing the sampled scale (as a tuple of two integers)
- and None.
- """
- assert isinstance(img_scale, list) and len(img_scale) == 2
- min_ratio, max_ratio = ratio_range
- assert min_ratio <= max_ratio
- ratio = np.random.random_sample() * (max_ratio - min_ratio) + min_ratio
- scale = int(img_scale[0] * ratio), int(img_scale[1] * ratio)
- return scale, None
- def _random_scale(self, results):
- """Randomly sample an img_scale according to `ratio_range` and `multiscale_mode`.
- Args:
- results (dict): A dictionary to store the sampled scale and its index.
- Returns:
- None. The sampled scale and its index are stored in `results` dictionary.
- """
- if self.ratio_range is not None:
- scale, scale_idx = self.random_sample_ratio(
- self.img_scale[0], self.ratio_range
- )
- elif len(self.img_scale) == 1:
- scale, scale_idx = self.img_scale[0], 0
- elif self.multiscale_mode == "range":
- scale, scale_idx = self.random_sample(self.img_scale)
- elif self.multiscale_mode == "value":
- scale, scale_idx = self.random_select(self.img_scale)
- else:
- raise NotImplementedError
- results["scale"] = scale
- results["scale_idx"] = scale_idx
- def _resize_img(self, results):
- """Resize images based on the scale factor provided in ``results['scale']`` while maintaining the aspect ratio if ``self.keep_ratio`` is True.
- Args:
- results (dict): A dictionary containing image fields and their corresponding scales.
- Returns:
- None. The ``results`` dictionary is modified in place with resized images and additional fields like `img_shape`, `pad_shape`, `scale_factor`, and `keep_ratio`.
- """
- for key in results.get("img_fields", ["img"]):
- for idx in range(len(results["img"])):
- if self.keep_ratio:
- img, scale_factor = self.imrescale(
- results[key][idx],
- results["scale"],
- interpolation="bilinear" if key == "img" else "nearest",
- return_scale=True,
- backend=self.backend,
- )
- new_h, new_w = img.shape[:2]
- h, w = results[key][idx].shape[:2]
- w_scale = new_w / w
- h_scale = new_h / h
- else:
- raise NotImplementedError
- results[key][idx] = img
- scale_factor = np.array(
- [w_scale, h_scale, w_scale, h_scale], dtype=np.float32
- )
- results["img_shape"] = img.shape
- # in case that there is no padding
- results["pad_shape"] = img.shape
- results["scale_factor"] = scale_factor
- results["keep_ratio"] = self.keep_ratio
- def rescale_size(self, old_size, scale, return_scale=False):
- """
- Calculate the new size to be rescaled to based on the given scale.
- Args:
- old_size (tuple): A tuple containing the width and height of the original size.
- scale (float, int, or list of int): The scale factor or a list of integers representing the maximum and minimum allowed size.
- return_scale (bool): Whether to return the scale factor along with the new size.
- Returns:
- tuple: A tuple containing the new size and optionally the scale factor if return_scale is True.
- """
- w, h = old_size
- if isinstance(scale, (float, int)):
- if scale <= 0:
- raise ValueError(f"Invalid scale {scale}, must be positive.")
- scale_factor = scale
- elif isinstance(scale, list):
- max_long_edge = max(scale)
- max_short_edge = min(scale)
- scale_factor = min(max_long_edge / max(h, w), max_short_edge / min(h, w))
- else:
- raise TypeError(
- f"Scale must be a number or list of int, but got {type(scale)}"
- )
- def _scale_size(size, scale):
- if isinstance(scale, (float, int)):
- scale = (scale, scale)
- w, h = size
- return int(w * float(scale[0]) + 0.5), int(h * float(scale[1]) + 0.5)
- new_size = _scale_size((w, h), scale_factor)
- if return_scale:
- return new_size, scale_factor
- else:
- return new_size
- def imrescale(
- self, img, scale, return_scale=False, interpolation="bilinear", backend=None
- ):
- """Resize image while keeping the aspect ratio.
- Args:
- img (numpy.ndarray): The input image.
- scale (float): The scaling factor.
- return_scale (bool): Whether to return the scaling factor along with the resized image.
- interpolation (str): The interpolation method to use. Defaults to 'bilinear'.
- backend (str): The backend to use for resizing. Defaults to None.
- Returns:
- tuple or numpy.ndarray: The resized image, and optionally the scaling factor.
- """
- h, w = img.shape[:2]
- new_size, scale_factor = self.rescale_size((w, h), scale, return_scale=True)
- rescaled_img = self.imresize(
- img, new_size, interpolation=interpolation, backend=backend
- )
- if return_scale:
- return rescaled_img, scale_factor
- else:
- return rescaled_img
- def imresize(
- self,
- img,
- size,
- return_scale=False,
- interpolation="bilinear",
- out=None,
- backend=None,
- ):
- """Resize an image to a given size.
- Args:
- img (numpy.ndarray): The input image to be resized.
- size (tuple): The new size for the image as (height, width).
- return_scale (bool): Whether to return the scaling factors along with the resized image.
- interpolation (str): The interpolation method to use. Default is 'bilinear'.
- out (numpy.ndarray, optional): Output array. If provided, it must have the same shape and dtype as the output array.
- backend (str, optional): The backend to use for resizing. Supported backends are 'cv2' and 'pillow'.
- Returns:
- numpy.ndarray or tuple: The resized image. If return_scale is True, returns a tuple containing the resized image and the scaling factors (w_scale, h_scale).
- """
- cv2_interp_codes = {
- "nearest": cv2.INTER_NEAREST,
- "bilinear": cv2.INTER_LINEAR,
- "bicubic": cv2.INTER_CUBIC,
- "area": cv2.INTER_AREA,
- "lanczos": cv2.INTER_LANCZOS4,
- }
- h, w = img.shape[:2]
- if backend not in ["cv2", "pillow"]:
- raise ValueError(
- f"backend: {backend} is not supported for resize."
- f"Supported backends are 'cv2', 'pillow'"
- )
- if backend == "pillow":
- raise NotImplementedError
- else:
- resized_img = cv2.resize(
- img, size, dst=out, interpolation=cv2_interp_codes[interpolation]
- )
- if not return_scale:
- return resized_img
- else:
- w_scale = size[0] / w
- h_scale = size[1] / h
- return resized_img, w_scale, h_scale
- def _resize_bboxes(self, results):
- """Resize bounding boxes with `results['scale_factor']`.
- Args:
- results (dict): A dictionary containing the bounding boxes and other related information.
- """
- for key in results.get("bbox_fields", []):
- bboxes = results[key] * results["scale_factor"]
- if self.bbox_clip_border:
- img_shape = results["img_shape"]
- bboxes[:, 0::2] = np.clip(bboxes[:, 0::2], 0, img_shape[1])
- bboxes[:, 1::2] = np.clip(bboxes[:, 1::2], 0, img_shape[0])
- results[key] = bboxes
- def _resize_masks(self, results):
- """Resize masks with ``results['scale']``"""
- raise NotImplementedError
- def _resize_seg(self, results):
- """Resize semantic segmentation map with ``results['scale']``."""
- raise NotImplementedError
- def __call__(self, results):
- """Call function to resize images, bounding boxes, masks, and semantic segmentation maps according to the provided scale or scale factor.
- Args:
- results (dict): A dictionary containing the input data, including 'img', 'scale', and optionally 'scale_factor'.
- Returns:
- dict: A dictionary with the resized data.
- """
- if "scale" not in results:
- if "scale_factor" in results:
- img_shape = results["img"][0].shape[:2]
- scale_factor = results["scale_factor"]
- assert isinstance(scale_factor, float)
- results["scale"] = list(
- [int(x * scale_factor) for x in img_shape][::-1]
- )
- else:
- self._random_scale(results)
- else:
- if not self.override:
- assert (
- "scale_factor" not in results
- ), "scale and scale_factor cannot be both set."
- else:
- results.pop("scale")
- if "scale_factor" in results:
- results.pop("scale_factor")
- self._random_scale(results)
- self._resize_img(results)
- self._resize_bboxes(results)
- return results
- @benchmark.timeit
- @class_requires_deps("opencv-contrib-python")
- class NormalizeImage:
- """Normalize the image."""
- """Normalize an image by subtracting the mean and dividing by the standard deviation.
- Args:
- mean (list or tuple): Mean values for each channel.
- std (list or tuple): Standard deviation values for each channel.
- to_rgb (bool): Whether to convert the image from BGR to RGB.
- """
- def __init__(self, mean, std, to_rgb=True):
- """Initializes the NormalizeImage class with mean, std, and to_rgb parameters."""
- self.mean = np.array(mean, dtype=np.float32)
- self.std = np.array(std, dtype=np.float32)
- self.to_rgb = to_rgb
- def _imnormalize(self, img, mean, std, to_rgb=True):
- """Normalize the given image inplace.
- Args:
- img (numpy.ndarray): The image to normalize.
- mean (numpy.ndarray): Mean values for normalization.
- std (numpy.ndarray): Standard deviation values for normalization.
- to_rgb (bool): Whether to convert the image from BGR to RGB.
- Returns:
- numpy.ndarray: The normalized image.
- """
- img = img.copy().astype(np.float32)
- mean = np.float64(mean.reshape(1, -1))
- stdinv = 1 / np.float64(std.reshape(1, -1))
- if to_rgb:
- cv2.cvtColor(img, cv2.COLOR_BGR2RGB, img) # inplace
- cv2.subtract(img, mean, img) # inplace
- cv2.multiply(img, stdinv, img) # inplace
- return img
- def __call__(self, results):
- """Call method to normalize images in the results dictionary.
- Args:
- results (dict): A dictionary containing image fields to normalize.
- Returns:
- dict: The results dictionary with normalized images.
- """
- for key in results.get("img_fields", ["img"]):
- if key == "img_depth":
- continue
- for idx in range(len(results["img"])):
- results[key][idx] = self._imnormalize(
- results[key][idx], self.mean, self.std, self.to_rgb
- )
- results["img_norm_cfg"] = dict(mean=self.mean, std=self.std, to_rgb=self.to_rgb)
- return results
- @benchmark.timeit
- @class_requires_deps("opencv-contrib-python")
- class PadImage(object):
- """Pad the image & mask."""
- def __init__(self, size=None, size_divisor=None, pad_val=0):
- self.size = size
- self.size_divisor = size_divisor
- self.pad_val = pad_val
- # only one of size and size_divisor should be valid
- assert size is not None or size_divisor is not None
- assert size is None or size_divisor is None
- def impad(
- self, img, *, shape=None, padding=None, pad_val=0, padding_mode="constant"
- ):
- """Pad the given image to a certain shape or pad on all sides
- Args:
- img (numpy.ndarray): The input image to be padded.
- shape (tuple, optional): Desired output shape in the form (height, width). One of shape or padding must be specified.
- padding (int, tuple, optional): Number of pixels to pad on each side of the image. If a single int is provided this
- is used to pad all sides with this value. If a tuple of length 2 is provided this is interpreted as (top_bottom, left_right).
- If a tuple of length 4 is provided this is interpreted as (top, right, bottom, left).
- pad_val (int, list, optional): Pixel value used for padding. If a list is provided, it must have the same length as the
- last dimension of the input image. Defaults to 0.
- padding_mode (str, optional): Padding mode to use. One of 'constant', 'edge', 'reflect', 'symmetric'.
- Defaults to 'constant'.
- Returns:
- numpy.ndarray: The padded image.
- """
- assert (shape is not None) ^ (padding is not None)
- if shape is not None:
- padding = [0, 0, shape[1] - img.shape[1], shape[0] - img.shape[0]]
- # check pad_val
- if isinstance(pad_val, list):
- assert len(pad_val) == img.shape[-1]
- elif not isinstance(pad_val, numbers.Number):
- raise TypeError(
- "pad_val must be a int or a list. " f"But received {type(pad_val)}"
- )
- # check padding
- if isinstance(padding, list) and len(padding) in [2, 4]:
- if len(padding) == 2:
- padding = [padding[0], padding[1], padding[0], padding[1]]
- elif isinstance(padding, numbers.Number):
- padding = [padding, padding, padding, padding]
- else:
- raise ValueError(
- "Padding must be a int or a 2, or 4 element list."
- f"But received {padding}"
- )
- # check padding mode
- assert padding_mode in ["constant", "edge", "reflect", "symmetric"]
- border_type = {
- "constant": cv2.BORDER_CONSTANT,
- "edge": cv2.BORDER_REPLICATE,
- "reflect": cv2.BORDER_REFLECT_101,
- "symmetric": cv2.BORDER_REFLECT,
- }
- img = cv2.copyMakeBorder(
- img,
- padding[1],
- padding[3],
- padding[0],
- padding[2],
- border_type[padding_mode],
- value=pad_val,
- )
- return img
- def impad_to_multiple(self, img, divisor, pad_val=0):
- """
- Pad an image to ensure each edge length is a multiple of a given number.
- Args:
- img (numpy.ndarray): The input image.
- divisor (int): The number to which each edge length should be a multiple.
- pad_val (int, optional): The value to pad the image with. Defaults to 0.
- Returns:
- numpy.ndarray: The padded image.
- """
- pad_h = int(np.ceil(img.shape[0] / divisor)) * divisor
- pad_w = int(np.ceil(img.shape[1] / divisor)) * divisor
- return self.impad(img, shape=(pad_h, pad_w), pad_val=pad_val)
- def _pad_img(self, results):
- """
- Pad images according to ``self.size`` or adjust their shapes to be multiples of ``self.size_divisor``.
- Args:
- results (dict): A dictionary containing image data, with 'img_fields' as an optional key
- pointing to a list of image field names.
- """
- for key in results.get("img_fields", ["img"]):
- if self.size is not None:
- padded_img = self.impad(
- results[key], shape=self.size, pad_val=self.pad_val
- )
- elif self.size_divisor is not None:
- for idx in range(len(results[key])):
- padded_img = self.impad_to_multiple(
- results[key][idx], self.size_divisor, pad_val=self.pad_val
- )
- results[key][idx] = padded_img
- results["pad_shape"] = padded_img.shape
- results["pad_fixed_size"] = self.size
- results["pad_size_divisor"] = self.size_divisor
- def _pad_masks(self, results):
- """Pad masks according to ``results['pad_shape']``."""
- raise NotImplementedError
- def _pad_seg(self, results):
- """Pad semantic segmentation map according to ``results['pad_shape']``."""
- raise NotImplementedError
- def __call__(self, results):
- """Call function to pad images, masks, semantic segmentation maps."""
- self._pad_img(results)
- return results
- @benchmark.timeit
- class SampleFilterByKey:
- """Collect data from the loader relevant to the specific task."""
- def __init__(
- self,
- keys,
- meta_keys=(
- "filename",
- "ori_shape",
- "img_shape",
- "lidar2img",
- "depth2img",
- "cam2img",
- "pad_shape",
- "scale_factor",
- "flip",
- "pcd_horizontal_flip",
- "pcd_vertical_flip",
- "box_type_3d",
- "img_norm_cfg",
- "pcd_trans",
- "sample_idx",
- "pcd_scale_factor",
- "pcd_rotation",
- "pts_filename",
- "transformation_3d_flow",
- ),
- ):
- self.keys = keys
- self.meta_keys = meta_keys
- def __call__(self, sample):
- """Call function to filter sample by keys. The keys in `meta_keys` are used to filter metadata from the input sample.
- Args:
- sample (Sample): The input sample to be filtered.
- Returns:
- Sample: A new Sample object containing only the filtered metadata and specified keys.
- """
- filtered_sample = Sample(path=sample.path, modality=sample.modality)
- filtered_sample.meta.id = sample.meta.id
- img_metas = {}
- for key in self.meta_keys:
- if key in sample:
- img_metas[key] = sample[key]
- filtered_sample["img_metas"] = img_metas
- for key in self.keys:
- filtered_sample[key] = sample[key]
- return filtered_sample
- @benchmark.timeit
- class GetInferInput:
- """Collect infer input data from transformed sample"""
- def collate_fn(self, batch):
- sample = batch[0]
- collated_batch = {}
- collated_fields = [
- "img",
- "points",
- "img_metas",
- "gt_bboxes_3d",
- "gt_labels_3d",
- "modality",
- "meta",
- "idx",
- "img_depth",
- ]
- for k in list(sample.keys()):
- if k not in collated_fields:
- continue
- if k == "img":
- collated_batch[k] = np.stack([elem[k] for elem in batch], axis=0)
- elif k == "img_depth":
- collated_batch[k] = np.stack(
- [np.stack(elem[k], axis=0) for elem in batch], axis=0
- )
- else:
- collated_batch[k] = [elem[k] for elem in batch]
- return collated_batch
- def __call__(self, sample):
- """Call function to infer input data from transformed sample
- Args:
- sample (Sample): The input sample data.
- Returns:
- infer_input (list): A list containing all the input data for inference.
- sample_id (str): token id of the input sample.
- """
- if sample.modality == "multimodal" or sample.modality == "multiview":
- if "img" in sample.keys():
- sample.img = np.stack(
- [img.transpose(2, 0, 1) for img in sample.img], axis=0
- )
- sample = self.collate_fn([sample])
- infer_input = []
- img = sample.get("img", None)[0]
- infer_input.append(img.astype(np.float32))
- lidar2img = np.stack(sample["img_metas"][0]["lidar2img"]).astype(np.float32)
- infer_input.append(lidar2img)
- points = sample.get("points", None)[0]
- infer_input.append(points.astype(np.float32))
- img_metas = {
- "input_lidar_path": sample["img_metas"][0]["pts_filename"],
- "input_img_paths": sample["img_metas"][0]["filename"],
- "sample_id": sample["img_metas"][0]["sample_idx"],
- }
- return infer_input, img_metas
|