| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import numpy as np
- from ....modules.multilingual_speech_recognition.model_list import MODELS
- from ....utils.download import download_and_extract
- from ...common.batch_sampler import AudioBatchSampler
- from ...utils.io import AudioReader
- from ..base import BasePredictor
- from .result import WhisperResult
- class WhisperPredictor(BasePredictor):
- entities = MODELS
- def __init__(self, *args, **kwargs):
- """Initializes WhisperPredictor.
- Args:
- *args: Arbitrary positional arguments passed to the superclass.
- **kwargs: Arbitrary keyword arguments passed to the superclass.
- """
- super().__init__(*args, **kwargs)
- self.audio_reader = self._build()
- download_and_extract(self.config["resource_path"], self.model_dir, "assets")
- def _build_batch_sampler(self):
- """Builds and returns an AudioBatchSampler instance.
- Returns:
- AudioBatchSampler: An instance of AudioBatchSampler.
- """
- return AudioBatchSampler()
- def _get_result_class(self):
- """Returns the result class, WhisperResult.
- Returns:
- type: The WhisperResult class.
- """
- return WhisperResult
- def _build(self):
- """Build the model, audio reader based on the configuration.
- Returns:
- AudioReader: An instance of AudioReader.
- """
- import paddle
- from .processors import ModelDimensions, Whisper
- # build model
- model_file = (self.model_dir / f"{self.MODEL_FILE_PREFIX}.pdparams").as_posix()
- model_dict = paddle.load(model_file)
- dims = ModelDimensions(**model_dict["dims"])
- self.model = Whisper(dims)
- self.model.load_dict(model_dict)
- self.model.eval()
- # build audio reader
- audio_reader = AudioReader(backend="wav")
- return audio_reader
- def process(self, batch_data):
- """
- Process a batch of data through the preprocessing, inference, and postprocessing.
- Args:
- batch_data (List[Union[str, np.ndarray], ...]): A batch of input data (e.g., audio file paths).
- Returns:
- dict: A dictionary containing the input path and result. The result include 'text', 'segments' and 'language'.
- """
- import paddle
- from .processors import log_mel_spectrogram
- # load mel_filters from resource_dir and extract feature for audio
- audio, sample_rate = self.audio_reader.read(batch_data[0])
- audio = paddle.to_tensor(audio)
- audio = audio[:, 0]
- audio = log_mel_spectrogram(audio, resource_path=self.model_dir)
- # adapt temperature
- temperature_increment_on_fallback = self.config[
- "temperature_increment_on_fallback"
- ]
- if (
- temperature_increment_on_fallback is not None
- and temperature_increment_on_fallback != "None"
- ):
- temperature = tuple(
- np.arange(
- self.config["temperature"],
- 1.0 + 1e-6,
- temperature_increment_on_fallback,
- )
- )
- else:
- temperature = [self.config["temperature"]]
- # model inference
- result = self.model.transcribe(
- audio,
- verbose=self.config["verbose"],
- task=self.config["task"],
- language=self.config["language"],
- resource_path=self.model_dir,
- temperature=temperature,
- compression_ratio_threshold=self.config["compression_ratio_threshold"],
- logprob_threshold=self.config["logprob_threshold"],
- best_of=self.config["best_of"],
- beam_size=self.config["beam_size"],
- patience=self.config["patience"],
- length_penalty=self.config["length_penalty"],
- initial_prompt=self.config["initial_prompt"],
- condition_on_previous_text=self.config["condition_on_previous_text"],
- no_speech_threshold=self.config["no_speech_threshold"],
- )
- return {
- "input_path": batch_data,
- "result": [result],
- }
|