The seal text detection module typically outputs multi-point bounding boxes around text regions, which are then passed as inputs to the distortion correction and text recognition modules for subsequent processing to identify the textual content of the seal. Recognizing seal text is an integral part of document processing and finds applications in various scenarios such as contract comparison, inventory access auditing, and invoice reimbursement verification. The seal text detection module serves as a subtask within OCR (Optical Character Recognition), responsible for locating and marking the regions containing seal text within an image. The performance of this module directly impacts the accuracy and efficiency of the entire seal text OCR system.
| Model Name | Model Download Link | Hmean(%) | GPU Inference Time (ms) | CPU Inference Time (ms) | Model Size (M) | Description |
|---|---|---|---|---|---|---|
| PP-OCRv4_server_seal_det | Inference Model/Trained Model | 98.21 | 84.341 | 2425.06 | 109 M | The server-side seal text detection model of PP-OCRv4 boasts higher accuracy and is suitable for deployment on better-equipped servers. |
| PP-OCRv4_mobile_seal_det | Inference Model/Trained Model | 96.47 | 10.5878 | 131.813 | 4.6 M | The mobile-side seal text detection model of PP-OCRv4, on the other hand, offers greater efficiency and is suitable for deployment on end devices. |
❗ Before quick integration, please install the PaddleX wheel package. For detailed instructions, refer to the PaddleX Local Installation Guide
Just a few lines of code can complete the inference of the Seal Text Detection module, allowing you to easily switch between models under this module. You can also integrate the model inference of the the Seal Text Detection module into your project. Before running the following code, please download the demo image to your local machine.
from paddlex import create_model
model = create_model("PP-OCRv4_server_seal_det")
output = model.predict("seal_text_det.png", batch_size=1)
for res in output:
res.print(json_format=False)
res.save_to_img("./output/")
res.save_to_json("./output/res.json")
For more information on using PaddleX's single-model inference API, refer to the PaddleX Single Model Python Script Usage Instructions.
If you seek higher accuracy, you can leverage PaddleX's custom development capabilities to develop better Seal Text Detection models. Before developing a Seal Text Detection model with PaddleX, ensure you have installed PaddleOCR plugin for PaddleX. The installation process can be found in the custom development section of the PaddleX Local Installation Tutorial.
Before model training, you need to prepare a dataset for the task. PaddleX provides data validation functionality for each module. Only data that passes validation can be used for model training. Additionally, PaddleX provides demo datasets for each module, which you can use to complete subsequent development. If you wish to use private datasets for model training, refer to PaddleX Text Detection and Recognition Task Module Data Preparation Tutorial.
You can download the demo dataset to a specified folder using the following commands:
wget https://paddle-model-ecology.bj.bcebos.com/paddlex/data/ocr_curve_det_dataset_examples.tar -P ./dataset
tar -xf ./dataset/ocr_curve_det_dataset_examples.tar -C ./dataset/
Data validation can be completed with a single command:
python main.py -c paddlex/configs/seal_text_detection/PP-OCRv4_server_seal_det.yaml \
-o Global.mode=check_dataset \
-o Global.dataset_dir=./dataset/ocr_curve_det_dataset_examples
After executing the above command, PaddleX will verify the dataset and collect basic information about it. Once the command runs successfully, a message saying Check dataset passed ! will be printed in the log. The verification results will be saved in ./output/check_dataset_result.json, and related outputs will be stored in the ./output/check_dataset directory, including visual examples of sample images and a histogram of sample distribution.
The specific content of the verification result file is:
{
"done_flag": true,
"check_pass": true,
"attributes": {
"train_samples": 606,
"train_sample_paths": [
"..\/ocr_curve_det_dataset_examples\/images\/circle_Aug07834.png",
"..\/ocr_curve_det_dataset_examples\/images\/circle_Aug09943.png",
"..\/ocr_curve_det_dataset_examples\/images\/circle_Aug04079.png",
"..\/ocr_curve_det_dataset_examples\/images\/circle_Aug05701.png",
"..\/ocr_curve_det_dataset_examples\/images\/circle_Aug08324.png",
"..\/ocr_curve_det_dataset_examples\/images\/circle_Aug07451.png",
"..\/ocr_curve_det_dataset_examples\/images\/circle_Aug09562.png",
"..\/ocr_curve_det_dataset_examples\/images\/circle_Aug08237.png",
"..\/ocr_curve_det_dataset_examples\/images\/circle_Aug01788.png",
"..\/ocr_curve_det_dataset_examples\/images\/circle_Aug06481.png"
],
"val_samples": 152,
"val_sample_paths": [
"..\/ocr_curve_det_dataset_examples\/images\/circle_Aug03724.png",
"..\/ocr_curve_det_dataset_examples\/images\/circle_Aug06456.png",
"..\/ocr_curve_det_dataset_examples\/images\/circle_Aug04029.png",
"..\/ocr_curve_det_dataset_examples\/images\/circle_Aug03603.png",
"..\/ocr_curve_det_dataset_examples\/images\/circle_Aug05454.png",
"..\/ocr_curve_det_dataset_examples\/images\/circle_Aug06269.png",
"..\/ocr_curve_det_dataset_examples\/images\/circle_Aug00624.png",
"..\/ocr_curve_det_dataset_examples\/images\/circle_Aug02818.png",
"..\/ocr_curve_det_dataset_examples\/images\/circle_Aug00538.png",
"..\/ocr_curve_det_dataset_examples\/images\/circle_Aug04935.png"
]
},
"analysis": {
"histogram": "check_dataset\/histogram.png"
},
"dataset_path": ".\/ocr_curve_det_dataset_examples",
"show_type": "image",
"dataset_type": "TextDetDataset"
}
The verification results above indicate that check_pass being True means the dataset format meets the requirements. Explanations for other indicators are as follows:
attributes.train_samples: The number of training samples in this dataset is 606;attributes.val_samples: The number of validation samples in this dataset is 152;attributes.train_sample_paths: A list of relative paths to the visualization images of training samples in this dataset;attributes.val_sample_paths: A list of relative paths to the visualization images of validation samples in this dataset;The dataset verification also analyzes the distribution of sample numbers across all classes and plots a histogram (histogram.png):
After completing dataset verification, you can convert the dataset format or re-split the training/validation ratio by modifying the configuration file or appending hyperparameters.
(1) Dataset Format Conversion
Seal text detection does not support data format conversion.
(2) Dataset Splitting
Parameters for dataset splitting can be set by modifying the CheckDataset fields in the configuration file. Example explanations for some parameters in the configuration file are as follows:
CheckDataset:split:enable: Whether to enable re-splitting the dataset, set to True to perform dataset splitting, default is False;train_percent: If re-splitting the dataset, set the percentage of the training set, which should be an integer between 0 and 100, ensuring the sum with val_percent is 100;For example, if you want to re-split the dataset with a 90% training set and a 10% validation set, modify the configuration file as follows:
......
CheckDataset:
......
split:
enable: True
train_percent: 90
val_percent: 10
......
Then execute the command:
python main.py -c paddlex/configs/seal_text_detection/PP-OCRv4_server_seal_det.yaml \
-o Global.mode=check_dataset \
-o Global.dataset_dir=./dataset/ocr_curve_det_dataset_examples
After dataset splitting, the original annotation files will be renamed to xxx.bak in the original path.
The above parameters also support setting through appending command line arguments:
python main.py -c paddlex/configs/seal_text_detection/PP-OCRv4_server_seal_det.yaml \
-o Global.mode=check_dataset \
-o Global.dataset_dir=./dataset/ocr_curve_det_dataset_examples \
-o CheckDataset.split.enable=True \
-o CheckDataset.split.train_percent=90 \
-o CheckDataset.split.val_percent=10
Model training can be completed with just one command. Here, we use the Seal Text Detection model (PP-OCRv4_server_seal_det) as an example:
python main.py -c paddlex/configs/seal_text_detection/PP-OCRv4_server_seal_det.yaml \
-o Global.mode=train \
-o Global.dataset_dir=./dataset/ocr_curve_det_dataset_examples
You need to follow these steps:
.yaml configuration file path for the model (here it's PP-OCRv4_server_seal_det.yaml,When training other models, you need to specify the corresponding configuration files. The relationship between the model and configuration files can be found in the PaddleX Model List (CPU/GPU)).-o Global.mode=train-o Global.dataset_dirOther related parameters can be set by modifying the Global and Train fields in the .yaml configuration file, or adjusted by appending parameters in the command line. For example, to train using the first two GPUs: -o Global.device=gpu:0,1; to set the number of training epochs to 10: -o Train.epochs_iters=10. For more modifiable parameters and their detailed explanations, refer to the PaddleX Common Configuration Parameters Documentation.
output. To specify a different save path, use the -o Global.output field in the configuration file.After model training, all outputs are saved in the specified output directory (default is ./output/), typically including:
train_result.json: Training result record file, including whether the training task completed successfully, produced weight metrics, and related file paths.
train.log: Training log file, recording model metric changes, loss changes, etc.config.yaml: Training configuration file, recording the hyperparameters used for this training session..pdparams, .pdema, .pdopt.pdstate, .pdiparams, .pdmodel: Model weight-related files, including network parameters, optimizer, EMA, static graph network parameters, and static graph network structure.After model training, you can evaluate the specified model weights on the validation set to verify model accuracy. Using PaddleX for model evaluation requires just one command:
python main.py -c paddlex/configs/seal_text_detection/PP-OCRv4_server_seal_det.yaml \
-o Global.mode=evaluate \
-o Global.dataset_dir=./dataset/ocr_curve_det_dataset_examples
Similar to model training, follow these steps:
.yaml configuration file path for the model (here it's PP-OCRv4_server_seal_det.yaml).-o Global.mode=evaluate-o Global.dataset_dirOther related parameters can be set by modifying the Global and Evaluate fields in the .yaml configuration file. For more details, refer to the PaddleX Common Configuration Parameters Documentation.
When evaluating the model, you need to specify the model weight file path. Each configuration file has a default weight save path. If you need to change it, simply append the command line parameter, e.g., -o Evaluate.weight_path=./output/best_model/best_model.pdparams.
After model evaluation, the following outputs are typically produced:
evaluate_result.json: Records the evaluation results, specifically whether the evaluation task completed successfully and the model's evaluation metrics, including precision, recall and Hmean.After model training and evaluation, you can use the trained model weights for inference predictions or Python integration.
To perform inference predictions via the command line, use the following command. Before running the following code, please download the demo image to your local machine.
python main.py -c paddlex/configs/seal_text_detection/PP-OCRv4_server_seal_det.yaml \
-o Global.mode=predict \
-o Predict.model_dir="./output/best_accuracy/inference" \
-o Predict.input="seal_text_det.png"
Similar to model training and evaluation, the following steps are required:
Specify the .yaml configuration file path of the model (here it's PP-OCRv4_server_seal_det.yaml)
Set the mode to model inference prediction: -o Global.mode=predict
Specify the model weights path: -o Predict.model_dir="./output/best_accuracy/inference"
Specify the input data path: -o Predict.inputh="..." Other related parameters can be set by modifying the fields under Global and Predict in the .yaml configuration file. For details, refer to PaddleX Common Model Configuration File Parameter Description.
Alternatively, you can use the PaddleX wheel package for inference, easily integrating the model into your own projects.
The model can be directly integrated into the PaddleX pipeline or into your own projects.
The document Seal Text Detection module can be integrated into PaddleX pipelines such as the General OCR Pipeline and Document Scene Information Extraction Pipeline v3 (PP-ChatOCRv3). Simply replace the model path to update the text detection module of the relevant pipeline.
The weights you produce can be directly integrated into the Seal Text Detection module. You can refer to the Python sample code in Quick Integration and just replace the model with the path to the model you trained.